ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.09466
  4. Cited By
Fair Active Learning: Solving the Labeling Problem in Insurance

Fair Active Learning: Solving the Labeling Problem in Insurance

17 December 2021
Romuald Elie
Caroline Hillairet
Franccois Hu
Marc Juillard
    FaML
ArXivPDFHTML

Papers citing "Fair Active Learning: Solving the Labeling Problem in Insurance"

6 / 6 papers shown
Title
Fairness guarantee in multi-class classification
Fairness guarantee in multi-class classification
Christophe Denis
Romuald Elie
Mohamed Hebiri
Franccois Hu
FaML
28
47
0
28 Sep 2021
Cold-start Active Learning through Self-supervised Language Modeling
Cold-start Active Learning through Self-supervised Language Modeling
Michelle Yuan
Hsuan-Tien Lin
Jordan L. Boyd-Graber
104
180
0
19 Oct 2020
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
294
4,143
0
23 Aug 2019
Improving fairness in machine learning systems: What do industry
  practitioners need?
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
192
730
0
13 Dec 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
1