Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2112.12218
Cited By
Maximum Entropy on Erroneous Predictions (MEEP): Improving model calibration for medical image segmentation
22 December 2021
Agostina J. Larrazabal
Cesar E. Martínez
Jose Dolz
Enzo Ferrante
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Maximum Entropy on Erroneous Predictions (MEEP): Improving model calibration for medical image segmentation"
7 / 7 papers shown
Title
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
L. J. L. Lopez
Shaza Elsharief
Dhiyaa Al Jorf
Firas Darwish
Congbo Ma
Farah E. Shamout
98
0
0
04 May 2025
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
89
1
0
25 Nov 2024
Do not trust what you trust: Miscalibration in Semi-supervised Learning
Shambhavi Mishra
Balamurali Murugesan
Ismail Ben Ayed
M. Pedersoli
Jose Dolz
43
2
0
22 Mar 2024
Class and Region-Adaptive Constraints for Network Calibration
Balamurali Murugesan
Julio Silva-Rodríguez
Ismail Ben Ayed
Jose Dolz
32
1
0
19 Mar 2024
Boundary-weighted logit consistency improves calibration of segmentation networks
Neerav Karani
Neel Dey
Polina Golland
17
3
0
16 Jul 2023
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
264
9,136
0
06 Jun 2015
1