ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.12218
  4. Cited By
Maximum Entropy on Erroneous Predictions (MEEP): Improving model
  calibration for medical image segmentation

Maximum Entropy on Erroneous Predictions (MEEP): Improving model calibration for medical image segmentation

22 December 2021
Agostina J. Larrazabal
Cesar E. Martínez
Jose Dolz
Enzo Ferrante
ArXivPDFHTML

Papers citing "Maximum Entropy on Erroneous Predictions (MEEP): Improving model calibration for medical image segmentation"

7 / 7 papers shown
Title
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
L. J. L. Lopez
Shaza Elsharief
Dhiyaa Al Jorf
Firas Darwish
Congbo Ma
Farah E. Shamout
98
0
0
04 May 2025
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
89
1
0
25 Nov 2024
Do not trust what you trust: Miscalibration in Semi-supervised Learning
Do not trust what you trust: Miscalibration in Semi-supervised Learning
Shambhavi Mishra
Balamurali Murugesan
Ismail Ben Ayed
M. Pedersoli
Jose Dolz
43
2
0
22 Mar 2024
Class and Region-Adaptive Constraints for Network Calibration
Class and Region-Adaptive Constraints for Network Calibration
Balamurali Murugesan
Julio Silva-Rodríguez
Ismail Ben Ayed
Jose Dolz
32
1
0
19 Mar 2024
Boundary-weighted logit consistency improves calibration of segmentation
  networks
Boundary-weighted logit consistency improves calibration of segmentation networks
Neerav Karani
Neel Dey
Polina Golland
17
3
0
16 Jul 2023
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1