Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2112.15383
Cited By
Separation of Scales and a Thermodynamic Description of Feature Learning in Some CNNs
31 December 2021
Inbar Seroussi
Gadi Naveh
Z. Ringel
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Separation of Scales and a Thermodynamic Description of Feature Learning in Some CNNs"
32 / 32 papers shown
Title
Information-theoretic reduction of deep neural networks to linear models in the overparametrized proportional regime
Francesco Camilli
D. Tieplova
Eleonora Bergamin
Jean Barbier
34
0
0
06 May 2025
Deep Neural Nets as Hamiltonians
Mike Winer
Boris Hanin
46
0
0
31 Mar 2025
Estimating the Spectral Moments of the Kernel Integral Operator from Finite Sample Matrices
Chanwoo Chun
SueYeon Chung
Daniel D. Lee
13
1
0
23 Oct 2024
Stochastic Kernel Regularisation Improves Generalisation in Deep Kernel Machines
Edward Milsom
Ben Anson
Laurence Aitchison
19
0
0
08 Oct 2024
Coding schemes in neural networks learning classification tasks
Alexander van Meegen
H. Sompolinsky
18
6
0
24 Jun 2024
Graph Neural Networks Do Not Always Oversmooth
Bastian Epping
Alexandre René
M. Helias
Michael T. Schaub
27
3
0
04 Jun 2024
Bayesian RG Flow in Neural Network Field Theories
Jessica N. Howard
Marc S. Klinger
Anindita Maiti
A. G. Stapleton
60
1
0
27 May 2024
Wilsonian Renormalization of Neural Network Gaussian Processes
Jessica N. Howard
Ro Jefferson
Anindita Maiti
Z. Ringel
BDL
60
3
0
09 May 2024
Towards Understanding Inductive Bias in Transformers: A View From Infinity
Itay Lavie
Guy Gur-Ari
Z. Ringel
24
1
0
07 Feb 2024
Asymptotics of feature learning in two-layer networks after one gradient-step
Hugo Cui
Luca Pesce
Yatin Dandi
Florent Krzakala
Yue M. Lu
Lenka Zdeborová
Bruno Loureiro
MLT
41
16
0
07 Feb 2024
Grokking as a First Order Phase Transition in Two Layer Networks
Noa Rubin
Inbar Seroussi
Z. Ringel
11
15
0
05 Oct 2023
Convolutional Deep Kernel Machines
Edward Milsom
Ben Anson
Laurence Aitchison
BDL
13
5
0
18 Sep 2023
Speed Limits for Deep Learning
Inbar Seroussi
Alexander A. Alemi
M. Helias
Z. Ringel
11
0
0
27 Jul 2023
Local Kernel Renormalization as a mechanism for feature learning in overparametrized Convolutional Neural Networks
R. Aiudi
R. Pacelli
A. Vezzani
R. Burioni
P. Rotondo
MLT
11
10
0
21 Jul 2023
Spectral-Bias and Kernel-Task Alignment in Physically Informed Neural Networks
Inbar Seroussi
Asaf Miron
Z. Ringel
PINN
19
0
0
12 Jul 2023
Quantitative CLTs in Deep Neural Networks
Stefano Favaro
Boris Hanin
Domenico Marinucci
I. Nourdin
G. Peccati
BDL
15
10
0
12 Jul 2023
Neural Network Field Theories: Non-Gaussianity, Actions, and Locality
M. Demirtaş
James Halverson
Anindita Maiti
M. Schwartz
Keegan Stoner
AI4CE
16
10
0
06 Jul 2023
Finite-time Lyapunov exponents of deep neural networks
L. Storm
H. Linander
J. Bec
K. Gustavsson
Bernhard Mehlig
9
6
0
21 Jun 2023
How Two-Layer Neural Networks Learn, One (Giant) Step at a Time
Yatin Dandi
Florent Krzakala
Bruno Loureiro
Luca Pesce
Ludovic Stephan
MLT
24
25
0
29 May 2023
Feature-Learning Networks Are Consistent Across Widths At Realistic Scales
Nikhil Vyas
Alexander B. Atanasov
Blake Bordelon
Depen Morwani
Sabarish Sainathan
C. Pehlevan
17
22
0
28 May 2023
Structures of Neural Network Effective Theories
cCaugin Ararat
Tianji Cai
Cem Tekin
Zhengkang Zhang
45
7
0
03 May 2023
Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean Field Neural Networks
Blake Bordelon
C. Pehlevan
MLT
24
29
0
06 Apr 2023
Bayesian Interpolation with Deep Linear Networks
Boris Hanin
Alexander Zlokapa
26
25
0
29 Dec 2022
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide Neural Networks
Blake Bordelon
C. Pehlevan
MLT
17
53
0
19 May 2022
Random matrix analysis of deep neural network weight matrices
M. Thamm
Max Staats
B. Rosenow
14
12
0
28 Mar 2022
Wide Mean-Field Bayesian Neural Networks Ignore the Data
Beau Coker
W. Bruinsma
David R. Burt
Weiwei Pan
Finale Doshi-Velez
UQCV
BDL
29
21
0
23 Feb 2022
Error Scaling Laws for Kernel Classification under Source and Capacity Conditions
Hugo Cui
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
20
10
0
29 Jan 2022
A theory of representation learning gives a deep generalisation of kernel methods
Adam X. Yang
Maxime Robeyns
Edward Milsom
Ben Anson
Nandi Schoots
Laurence Aitchison
BDL
9
10
0
30 Aug 2021
The large learning rate phase of deep learning: the catapult mechanism
Aitor Lewkowycz
Yasaman Bahri
Ethan Dyer
Jascha Narain Sohl-Dickstein
Guy Gur-Ari
ODL
150
232
0
04 Mar 2020
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural Networks
Blake Bordelon
Abdulkadir Canatar
C. Pehlevan
131
199
0
07 Feb 2020
Why bigger is not always better: on finite and infinite neural networks
Laurence Aitchison
173
51
0
17 Oct 2019
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
243
7,597
0
03 Jul 2012
1