ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.08157
  4. Cited By
WPPNets and WPPFlows: The Power of Wasserstein Patch Priors for
  Superresolution

WPPNets and WPPFlows: The Power of Wasserstein Patch Priors for Superresolution

20 January 2022
Fabian Altekrüger
J. Hertrich
ArXivPDFHTML

Papers citing "WPPNets and WPPFlows: The Power of Wasserstein Patch Priors for Superresolution"

5 / 5 papers shown
Title
Learning from small data sets: Patch-based regularizers in inverse
  problems for image reconstruction
Learning from small data sets: Patch-based regularizers in inverse problems for image reconstruction
Moritz Piening
Fabian Altekrüger
J. Hertrich
Paul Hagemann
Andrea Walther
Gabriele Steidl
19
5
0
27 Dec 2023
Conditional Generative Models are Provably Robust: Pointwise Guarantees
  for Bayesian Inverse Problems
Conditional Generative Models are Provably Robust: Pointwise Guarantees for Bayesian Inverse Problems
Fabian Altekrüger
Paul Hagemann
Gabriele Steidl
TPM
16
9
0
28 Mar 2023
Generalized Normalizing Flows via Markov Chains
Generalized Normalizing Flows via Markov Chains
Paul Hagemann
J. Hertrich
Gabriele Steidl
BDL
DiffM
AI4CE
17
22
0
24 Nov 2021
Posterior Sampling for Image Restoration using Explicit Patch Priors
Posterior Sampling for Image Restoration using Explicit Patch Priors
Roy Friedman
Yair Weiss
33
5
0
20 Apr 2021
Invertible Neural Networks versus MCMC for Posterior Reconstruction in
  Grazing Incidence X-Ray Fluorescence
Invertible Neural Networks versus MCMC for Posterior Reconstruction in Grazing Incidence X-Ray Fluorescence
A. Andrle
N. Farchmin
Paul Hagemann
Sebastian Heidenreich
V. Soltwisch
Gabriele Steidl
58
16
0
05 Feb 2021
1