Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.05214
Cited By
Towards a Theory of Non-Log-Concave Sampling: First-Order Stationarity Guarantees for Langevin Monte Carlo
10 February 2022
Krishnakumar Balasubramanian
Sinho Chewi
Murat A. Erdogdu
Adil Salim
Matthew Shunshi Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards a Theory of Non-Log-Concave Sampling: First-Order Stationarity Guarantees for Langevin Monte Carlo"
49 / 49 papers shown
Title
On the query complexity of sampling from non-log-concave distributions
Yuchen He
Chihao Zhang
41
0
0
10 Feb 2025
Mixing Time of the Proximal Sampler in Relative Fisher Information via Strong Data Processing Inequality
Andre Wibisono
53
1
0
08 Feb 2025
Non-geodesically-convex optimization in the Wasserstein space
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Petrus Mikkola
Marcelo Hartmann
Kai Puolamaki
Arto Klami
57
2
0
08 Jan 2025
Sampling with Adaptive Variance for Multimodal Distributions
Bjorn Engquist
Kui Ren
Yunan Yang
72
1
0
20 Nov 2024
A phase transition in sampling from Restricted Boltzmann Machines
Youngwoo Kwon
Qian Qin
Guanyang Wang
Yuchen Wei
20
0
0
10 Oct 2024
Convergence of Noise-Free Sampling Algorithms with Regularized Wasserstein Proximals
Fuqun Han
Stanley Osher
Wuchen Li
47
1
0
03 Sep 2024
Theoretical Guarantees for Variational Inference with Fixed-Variance Mixture of Gaussians
Tom Huix
Anna Korba
Alain Durmus
Eric Moulines
36
7
0
06 Jun 2024
Principled Probabilistic Imaging using Diffusion Models as Plug-and-Play Priors
Zihui Wu
Yu Sun
Yifan Chen
Bingliang Zhang
Yisong Yue
Katherine Bouman
DiffM
34
20
0
29 May 2024
Tamed Langevin sampling under weaker conditions
Iosif Lytras
P. Mertikopoulos
46
2
0
27 May 2024
The Poisson Midpoint Method for Langevin Dynamics: Provably Efficient Discretization for Diffusion Models
S. Kandasamy
Dheeraj M. Nagaraj
DiffM
31
2
0
27 May 2024
A Separation in Heavy-Tailed Sampling: Gaussian vs. Stable Oracles for Proximal Samplers
Ye He
Alireza Mousavi-Hosseini
Krishnakumar Balasubramanian
Murat A. Erdogdu
28
0
0
27 May 2024
Taming Score-Based Diffusion Priors for Infinite-Dimensional Nonlinear Inverse Problems
Lorenzo Baldassari
Ali Siahkoohi
Josselin Garnier
K. Sølna
Maarten V. de Hoop
DiffM
39
1
0
24 May 2024
On the Convergence of Differentially-Private Fine-tuning: To Linearly Probe or to Fully Fine-tune?
Shuqi Ke
Charlie Hou
Giulia Fanti
Sewoong Oh
41
4
0
29 Feb 2024
Zeroth-Order Sampling Methods for Non-Log-Concave Distributions: Alleviating Metastability by Denoising Diffusion
Ye He
Kevin Rojas
Molei Tao
DiffM
38
8
0
27 Feb 2024
Continuous-time Riemannian SGD and SVRG Flows on Wasserstein Probabilistic Space
Mingyang Yi
Bohan Wang
32
0
0
24 Jan 2024
Kernelized Normalizing Constant Estimation: Bridging Bayesian Quadrature and Bayesian Optimization
Xu Cai
Jonathan Scarlett
24
0
0
11 Jan 2024
Taming under isoperimetry
Iosif Lytras
Sotirios Sabanis
32
3
0
15 Nov 2023
Particle-based Variational Inference with Generalized Wasserstein Gradient Flow
Ziheng Cheng
Shiyue Zhang
Longlin Yu
Cheng Zhang
BDL
32
6
0
25 Oct 2023
Provable Probabilistic Imaging using Score-Based Generative Priors
Yu Sun
Zihui Wu
Yifan Chen
Berthy Feng
Katherine Bouman
DiffM
29
26
0
16 Oct 2023
Fast Conditional Mixing of MCMC Algorithms for Non-log-concave Distributions
Xiang Cheng
Bohan Wang
Junzhe Zhang
Yusong Zhu
18
6
0
18 Jun 2023
Langevin Monte Carlo for strongly log-concave distributions: Randomized midpoint revisited
Lu Yu
Avetik G. Karagulyan
A. Dalalyan
13
5
0
14 Jun 2023
Conditionally Strongly Log-Concave Generative Models
Florentin Guth
Etienne Lempereur
Joan Bruna
S. Mallat
45
3
0
31 May 2023
Provably Fast Finite Particle Variants of SVGD via Virtual Particle Stochastic Approximation
Aniket Das
Dheeraj M. Nagaraj
38
7
0
27 May 2023
Non-Log-Concave and Nonsmooth Sampling via Langevin Monte Carlo Algorithms
Tim Tsz-Kit Lau
Han Liu
T. Pock
39
4
0
25 May 2023
Learning Rate Free Sampling in Constrained Domains
Louis Sharrock
Lester W. Mackey
Christopher Nemeth
41
2
0
24 May 2023
Subsampling Error in Stochastic Gradient Langevin Diffusions
Kexin Jin
Chenguang Liu
J. Latz
33
0
0
23 May 2023
Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space
Michael Diao
Krishnakumar Balasubramanian
Sinho Chewi
Adil Salim
BDL
32
21
0
10 Apr 2023
Query lower bounds for log-concave sampling
Sinho Chewi
Jaume de Dios Pont
Jerry Li
Chen Lu
Shyam Narayanan
32
8
0
05 Apr 2023
Efficient Sampling of Stochastic Differential Equations with Positive Semi-Definite Models
Anant Raj
Umut Simsekli
Alessandro Rudi
DiffM
31
1
0
30 Mar 2023
Towards a Complete Analysis of Langevin Monte Carlo: Beyond Poincaré Inequality
Alireza Mousavi-Hosseini
Tyler Farghly
Ye He
Krishnakumar Balasubramanian
Murat A. Erdogdu
45
25
0
07 Mar 2023
Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation
David Holzmüller
Francis R. Bach
36
8
0
06 Mar 2023
Mean-Square Analysis of Discretized Itô Diffusions for Heavy-tailed Sampling
Ye He
Tyler Farghly
Krishnakumar Balasubramanian
Murat A. Erdogdu
47
4
0
01 Mar 2023
Non-convex sampling for a mixture of locally smooth potentials
D. Nguyen
33
0
0
31 Jan 2023
Regularized Stein Variational Gradient Flow
Ye He
Krishnakumar Balasubramanian
Bharath K. Sriperumbudur
Jianfeng Lu
OT
34
11
0
15 Nov 2022
A Dynamical System View of Langevin-Based Non-Convex Sampling
Mohammad Reza Karimi
Ya-Ping Hsieh
Andreas Krause
40
4
0
25 Oct 2022
Sampling with Mollified Interaction Energy Descent
Lingxiao Li
Qiang Liu
Anna Korba
Mikhail Yurochkin
Justin Solomon
38
15
0
24 Oct 2022
Resolving the Mixing Time of the Langevin Algorithm to its Stationary Distribution for Log-Concave Sampling
Jason M. Altschuler
Kunal Talwar
38
24
0
16 Oct 2022
Fisher information lower bounds for sampling
Sinho Chewi
P. Gerber
Holden Lee
Chen Lu
49
15
0
05 Oct 2022
How good is your Laplace approximation of the Bayesian posterior? Finite-sample computable error bounds for a variety of useful divergences
Mikolaj Kasprzak
Ryan Giordano
Tamara Broderick
33
4
0
29 Sep 2022
Utilising the CLT Structure in Stochastic Gradient based Sampling : Improved Analysis and Faster Algorithms
Aniket Das
Dheeraj M. Nagaraj
Anant Raj
54
6
0
08 Jun 2022
Federated Learning with a Sampling Algorithm under Isoperimetry
Lukang Sun
Adil Salim
Peter Richtárik
FedML
26
7
0
02 Jun 2022
Convergence of Stein Variational Gradient Descent under a Weaker Smoothness Condition
Lukang Sun
Avetik G. Karagulyan
Peter Richtárik
26
19
0
01 Jun 2022
Constrained Langevin Algorithms with L-mixing External Random Variables
Yu Zheng
Andrew G. Lamperski
30
5
0
27 May 2022
Improved Convergence Rate of Stochastic Gradient Langevin Dynamics with Variance Reduction and its Application to Optimization
Yuri Kinoshita
Taiji Suzuki
18
16
0
30 Mar 2022
A Proximal Algorithm for Sampling
Jiaming Liang
Yongxin Chen
27
17
0
28 Feb 2022
Heavy-tailed Sampling via Transformed Unadjusted Langevin Algorithm
Ye He
Krishnakumar Balasubramanian
Murat A. Erdogdu
41
5
0
20 Jan 2022
A Convergence Theory for SVGD in the Population Limit under Talagrand's Inequality T1
Adil Salim
Lukang Sun
Peter Richtárik
26
20
0
06 Jun 2021
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo under local conditions for nonconvex optimization
Ömer Deniz Akyildiz
Sotirios Sabanis
46
17
0
13 Feb 2020
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
139
1,199
0
16 Aug 2016
1