Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.05983
Cited By
v1
v2
v3 (latest)
Uncalibrated Models Can Improve Human-AI Collaboration
12 February 2022
Kailas Vodrahalli
Tobias Gerstenberg
James Zou
HAI
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Uncalibrated Models Can Improve Human-AI Collaboration"
8 / 8 papers shown
Title
From Calibration to Collaboration: LLM Uncertainty Quantification Should Be More Human-Centered
Siddartha Devic
Tejas Srinivasan
Jesse Thomason
Willie Neiswanger
Vatsal Sharan
26
0
0
09 Jun 2025
The Impact and Feasibility of Self-Confidence Shaping for AI-Assisted Decision-Making
Takehiro Takayanagi
Ryuji Hashimoto
Chung-Chi Chen
Kiyoshi Izumi
88
0
0
21 Feb 2025
Optimising Human-AI Collaboration by Learning Convincing Explanations
Alex J. Chan
Alihan Huyuk
M. Schaar
87
3
0
13 Nov 2023
Human-Aligned Calibration for AI-Assisted Decision Making
N. C. Benz
Manuel Gomez Rodriguez
77
19
0
31 May 2023
Calibrating Ensembles for Scalable Uncertainty Quantification in Deep Learning-based Medical Segmentation
Thomas Buddenkotte
L. E. Sanchez
Mireia Crispin-Ortuzar
Ramona Woitek
C. McCague
James D. Brenton
Ozan Oktem
Evis Sala
L. Rundo
UQCV
61
2
0
20 Sep 2022
Eliciting and Learning with Soft Labels from Every Annotator
Katherine M. Collins
Umang Bhatt
Adrian Weller
86
47
0
02 Jul 2022
Forecasting Future World Events with Neural Networks
Andy Zou
Tristan Xiao
Ryan Jia
Joe Kwon
Mantas Mazeika
Richard Li
Dawn Song
Jacob Steinhardt
Owain Evans
Dan Hendrycks
106
27
0
30 Jun 2022
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.3K
17,197
0
16 Feb 2016
1