ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.09168
  4. Cited By
On the Pitfalls of Heteroscedastic Uncertainty Estimation with
  Probabilistic Neural Networks

On the Pitfalls of Heteroscedastic Uncertainty Estimation with Probabilistic Neural Networks

17 March 2022
Maximilian Seitzer
Arash Tavakoli
Dimitrije Antic
Georg Martius
    BDL
    UQCV
ArXivPDFHTML

Papers citing "On the Pitfalls of Heteroscedastic Uncertainty Estimation with Probabilistic Neural Networks"

22 / 22 papers shown
Title
Cooperative Bayesian and variance networks disentangle aleatoric and epistemic uncertainties
Cooperative Bayesian and variance networks disentangle aleatoric and epistemic uncertainties
Jiaxiang Yi
Miguel A. Bessa
UD
PER
UQCV
46
0
0
05 May 2025
OccuEMBED: Occupancy Extraction Merged with Building Energy Disaggregation for Occupant-Responsive Operation at Scale
OccuEMBED: Occupancy Extraction Merged with Building Energy Disaggregation for Occupant-Responsive Operation at Scale
Yufei Zhang
Andrew Sonta
29
0
0
23 Apr 2025
C-DiffSET: Leveraging Latent Diffusion for SAR-to-EO Image Translation with Confidence-Guided Reliable Object Generation
Jeonghyeok Do
Jaehyup Lee
Munchurl Kim
DiffM
48
1
0
16 Nov 2024
Deep Modeling of Non-Gaussian Aleatoric Uncertainty
Deep Modeling of Non-Gaussian Aleatoric Uncertainty
Aastha Acharya
Caleb Lee
Marissa DÁlonzo
Jared Shamwell
Nisar R. Ahmed
Rebecca L. Russell
BDL
46
0
0
30 May 2024
Weakly Supervised Bayesian Shape Modeling from Unsegmented Medical
  Images
Weakly Supervised Bayesian Shape Modeling from Unsegmented Medical Images
Jadie Adams
Krithika S. Iyer
Shireen Elhabian
27
2
0
15 May 2024
Probabilistic Forecasting of Irregular Time Series via Conditional Flows
Probabilistic Forecasting of Irregular Time Series via Conditional Flows
Vijaya Krishna Yalavarthi
Randolf Scholz
Stefan Born
Lars Schmidt-Thieme
AI4TS
35
0
0
09 Feb 2024
Identifying Drivers of Predictive Aleatoric Uncertainty
Identifying Drivers of Predictive Aleatoric Uncertainty
Pascal Iversen
Simon Witzke
Katharina Baum
Bernhard Y. Renard
UD
53
1
0
12 Dec 2023
Pedestrian Trajectory Forecasting Using Deep Ensembles Under Sensing
  Uncertainty
Pedestrian Trajectory Forecasting Using Deep Ensembles Under Sensing Uncertainty
Anshul Nayak
A. Eskandarian
Zachary R. Doerzaph
P. Ghorai
35
4
0
26 May 2023
Coherent Soft Imitation Learning
Coherent Soft Imitation Learning
Joe Watson
Sandy H. Huang
Nicholas Heess
32
11
0
25 May 2023
Integrating Uncertainty into Neural Network-based Speech Enhancement
Integrating Uncertainty into Neural Network-based Speech Enhancement
Hu Fang
Dennis Becker
S. Wermter
Timo Gerkmann
UQCV
29
2
0
15 May 2023
UnCRtainTS: Uncertainty Quantification for Cloud Removal in Optical
  Satellite Time Series
UnCRtainTS: Uncertainty Quantification for Cloud Removal in Optical Satellite Time Series
Patrick Ebel
Vivien Sainte Fare Garnot
M. Schmitt
Jan Dirk Wegner
Xiao Xiang Zhu
20
32
0
11 Apr 2023
Inductive biases in deep learning models for weather prediction
Inductive biases in deep learning models for weather prediction
Jannik Thümmel
Matthias Karlbauer
S. Otte
C. Zarfl
Georg Martius
...
Thomas Scholten
Ulrich Friedrich
V. Wulfmeyer
B. Goswami
Martin Volker Butz
AI4CE
43
5
0
06 Apr 2023
Faithful Heteroscedastic Regression with Neural Networks
Faithful Heteroscedastic Regression with Neural Networks
Andrew Stirn
H. Wessels
Megan D. Schertzer
L. Pereira
Neville E. Sanjana
David A. Knowles
UQCV
25
14
0
18 Dec 2022
Scalable Dynamic Mixture Model with Full Covariance for Probabilistic Traffic Forecasting
Scalable Dynamic Mixture Model with Full Covariance for Probabilistic Traffic Forecasting
Seongjin Choi
Nicolas Saunier
Vincent Zhihao Zheng
M. Trépanier
Lijun Sun
16
1
0
10 Dec 2022
Estimating Regression Predictive Distributions with Sample Networks
Estimating Regression Predictive Distributions with Sample Networks
Ali Harakeh
Jordan S. K. Hu
Naiqing Guan
Steven L. Waslander
Liam Paull
BDL
UQCV
22
4
0
24 Nov 2022
Autoinverse: Uncertainty Aware Inversion of Neural Networks
Autoinverse: Uncertainty Aware Inversion of Neural Networks
Navid Ansari
Hans-Peter Seidel
Nima Vahidi Ferdowsi
Vahid Babaei
BDL
16
12
0
29 Aug 2022
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Patrik Reizinger
Luigi Gresele
Jack Brady
Julius von Kügelgen
Dominik Zietlow
Bernhard Schölkopf
Georg Martius
Wieland Brendel
M. Besserve
DRL
35
19
0
06 Jun 2022
Developing hierarchical anticipations via neural network-based event
  segmentation
Developing hierarchical anticipations via neural network-based event segmentation
Christian Gumbsch
M. Adam
B. Elsner
Georg Martius
Martin Volker Butz
21
5
0
04 Jun 2022
A Deeper Look into Aleatoric and Epistemic Uncertainty Disentanglement
A Deeper Look into Aleatoric and Epistemic Uncertainty Disentanglement
Matias Valdenegro-Toro
Daniel Saromo
UD
PER
BDL
UQCV
16
76
0
20 Apr 2022
Autoencoder-based background reconstruction and foreground segmentation
  with background noise estimation
Autoencoder-based background reconstruction and foreground segmentation with background noise estimation
Bruno Sauvalle
A. de La Fortelle
21
12
0
15 Dec 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1