ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.11860
  4. Cited By
Practical tradeoffs between memory, compute, and performance in learned
  optimizers

Practical tradeoffs between memory, compute, and performance in learned optimizers

22 March 2022
Luke Metz
C. Freeman
James Harrison
Niru Maheswaranathan
Jascha Narain Sohl-Dickstein
ArXivPDFHTML

Papers citing "Practical tradeoffs between memory, compute, and performance in learned optimizers"

27 / 27 papers shown
Title
Scalable Meta-Learning via Mixed-Mode Differentiation
Scalable Meta-Learning via Mixed-Mode Differentiation
Iurii Kemaev
Dan A Calian
Luisa M Zintgraf
Gregory Farquhar
H. V. Hasselt
54
0
0
01 May 2025
Learning Versatile Optimizers on a Compute Diet
Learning Versatile Optimizers on a Compute Diet
A. Moudgil
Boris Knyazev
Guillaume Lajoie
Eugene Belilovsky
93
0
0
22 Jan 2025
A Generalization Result for Convergence in Learning-to-Optimize
A Generalization Result for Convergence in Learning-to-Optimize
Michael Sucker
Peter Ochs
26
0
0
10 Oct 2024
Learning to Explore for Stochastic Gradient MCMC
Learning to Explore for Stochastic Gradient MCMC
Seunghyun Kim
Seohyeon Jung
Seonghyeon Kim
Juho Lee
BDL
30
1
0
17 Aug 2024
Can Learned Optimization Make Reinforcement Learning Less Difficult?
Can Learned Optimization Make Reinforcement Learning Less Difficult?
Alexander David Goldie
Chris Xiaoxuan Lu
Matthew Jackson
Shimon Whiteson
Jakob N. Foerster
40
3
0
09 Jul 2024
$μ$LO: Compute-Efficient Meta-Generalization of Learned Optimizers
μμμLO: Compute-Efficient Meta-Generalization of Learned Optimizers
Benjamin Thérien
Charles-Étienne Joseph
Boris Knyazev
Edouard Oyallon
Irina Rish
Eugene Belilovsky
AI4CE
32
1
0
31 May 2024
From Learning to Optimize to Learning Optimization Algorithms
From Learning to Optimize to Learning Optimization Algorithms
Camille Castera
Peter Ochs
57
1
0
28 May 2024
Graph Neural Networks for Learning Equivariant Representations of Neural
  Networks
Graph Neural Networks for Learning Equivariant Representations of Neural Networks
Miltiadis Kofinas
Boris Knyazev
Yan Zhang
Yunlu Chen
Gertjan J. Burghouts
E. Gavves
Cees G. M. Snoek
David W. Zhang
44
29
0
18 Mar 2024
QN-Mixer: A Quasi-Newton MLP-Mixer Model for Sparse-View CT
  Reconstruction
QN-Mixer: A Quasi-Newton MLP-Mixer Model for Sparse-View CT Reconstruction
Ishak Ayad
Nicolas Larue
Mai K. Nguyen
33
3
0
28 Feb 2024
Dynamic Memory Based Adaptive Optimization
Dynamic Memory Based Adaptive Optimization
Balázs Szegedy
Domonkos Czifra
Péter Korösi-Szabó
ODL
27
0
0
23 Feb 2024
Can We Learn Communication-Efficient Optimizers?
Can We Learn Communication-Efficient Optimizers?
Charles-Étienne Joseph
Benjamin Thérien
A. Moudgil
Boris Knyazev
Eugene Belilovsky
26
1
0
02 Dec 2023
Towards Constituting Mathematical Structures for Learning to Optimize
Towards Constituting Mathematical Structures for Learning to Optimize
Jialin Liu
Xiaohan Chen
Zhangyang Wang
W. Yin
HanQin Cai
21
12
0
29 May 2023
Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution
  Strategies
Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution Strategies
Oscar Li
James Harrison
Jascha Narain Sohl-Dickstein
Virginia Smith
Luke Metz
39
5
0
21 Apr 2023
Improving physics-informed neural networks with meta-learned
  optimization
Improving physics-informed neural networks with meta-learned optimization
Alexander Bihlo
PINN
26
18
0
13 Mar 2023
Learning to Optimize for Reinforcement Learning
Learning to Optimize for Reinforcement Learning
Qingfeng Lan
Rupam Mahmood
Shuicheng Yan
Zhongwen Xu
OffRL
24
6
0
03 Feb 2023
A Nonstochastic Control Approach to Optimization
A Nonstochastic Control Approach to Optimization
Xinyi Chen
Elad Hazan
40
5
0
19 Jan 2023
evosax: JAX-based Evolution Strategies
evosax: JAX-based Evolution Strategies
R. T. Lange
28
54
0
08 Dec 2022
Transformer-Based Learned Optimization
Transformer-Based Learned Optimization
Erik Gartner
Luke Metz
Mykhaylo Andriluka
C. Freeman
C. Sminchisescu
16
11
0
02 Dec 2022
Discovering Evolution Strategies via Meta-Black-Box Optimization
Discovering Evolution Strategies via Meta-Black-Box Optimization
R. T. Lange
Tom Schaul
Yutian Chen
Tom Zahavy
Valenti Dallibard
Chris Xiaoxuan Lu
Satinder Singh
Sebastian Flennerhag
33
47
0
21 Nov 2022
VeLO: Training Versatile Learned Optimizers by Scaling Up
VeLO: Training Versatile Learned Optimizers by Scaling Up
Luke Metz
James Harrison
C. Freeman
Amil Merchant
Lucas Beyer
...
Naman Agrawal
Ben Poole
Igor Mordatch
Adam Roberts
Jascha Narain Sohl-Dickstein
21
60
0
17 Nov 2022
Discovered Policy Optimisation
Discovered Policy Optimisation
Chris Xiaoxuan Lu
J. Kuba
Alistair Letcher
Luke Metz
Christian Schroeder de Witt
Jakob N. Foerster
OffRL
23
74
0
11 Oct 2022
Learning to Learn with Generative Models of Neural Network Checkpoints
Learning to Learn with Generative Models of Neural Network Checkpoints
William S. Peebles
Ilija Radosavovic
Tim Brooks
Alexei A. Efros
Jitendra Malik
UQCV
73
64
0
26 Sep 2022
A Closer Look at Learned Optimization: Stability, Robustness, and
  Inductive Biases
A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases
James Harrison
Luke Metz
Jascha Narain Sohl-Dickstein
42
22
0
22 Sep 2022
Symbolic Learning to Optimize: Towards Interpretability and Scalability
Symbolic Learning to Optimize: Towards Interpretability and Scalability
Wenqing Zheng
Tianlong Chen
Ting-Kuei Hu
Zhangyang Wang
37
18
0
13 Mar 2022
Learning to Optimize: A Primer and A Benchmark
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
23
223
0
23 Mar 2021
Training Learned Optimizers with Randomly Initialized Learned Optimizers
Training Learned Optimizers with Randomly Initialized Learned Optimizers
Luke Metz
C. Freeman
Niru Maheswaranathan
Jascha Narain Sohl-Dickstein
41
12
0
14 Jan 2021
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
243
11,659
0
09 Mar 2017
1