ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.12852
  4. Cited By
Graph Neural Networks in Particle Physics: Implementations, Innovations,
  and Challenges

Graph Neural Networks in Particle Physics: Implementations, Innovations, and Challenges

23 March 2022
S. Thais
P. Calafiura
G. Chachamis
G. Dezoort
Javier Mauricio Duarte
S. Ganguly
Michael Kagan
D. Murnane
Mark S. Neubauer
K. Terao
    PINN
    AI4CE
ArXivPDFHTML

Papers citing "Graph Neural Networks in Particle Physics: Implementations, Innovations, and Challenges"

17 / 17 papers shown
Title
Branches of a Tree: Taking Derivatives of Programs with Discrete and
  Branching Randomness in High Energy Physics
Branches of a Tree: Taking Derivatives of Programs with Discrete and Branching Randomness in High Energy Physics
Michael Kagan
Lukas Heinrich
14
9
0
31 Aug 2023
End-to-end multi-particle reconstruction in high occupancy imaging
  calorimeters with graph neural networks
End-to-end multi-particle reconstruction in high occupancy imaging calorimeters with graph neural networks
S. Qasim
N. Chernyavskaya
J. Kieseler
K. Long
O. Viazlo
M. Pierini
R. Nawaz
10
23
0
04 Apr 2022
Machine Learning for Particle Flow Reconstruction at CMS
Machine Learning for Particle Flow Reconstruction at CMS
J. Pata
Javier Mauricio Duarte
Farouk Mokhtar
Eric Wulff
J. Yoo
J. Vlimant
M. Pierini
M. Girone
12
24
0
01 Mar 2022
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
163
1,095
0
27 Apr 2021
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
Ana Lucic
Maartje ter Hoeve
Gabriele Tolomei
Maarten de Rijke
Fabrizio Silvestri
107
87
0
05 Feb 2021
MLPF: Efficient machine-learned particle-flow reconstruction using graph
  neural networks
MLPF: Efficient machine-learned particle-flow reconstruction using graph neural networks
J. Pata
Javier Mauricio Duarte
J. Vlimant
M. Pierini
M. Spiropulu
103
67
0
21 Jan 2021
Permutationless Many-Jet Event Reconstruction with Symmetry Preserving
  Attention Networks
Permutationless Many-Jet Event Reconstruction with Symmetry Preserving Attention Networks
M. Fenton
Alexander Shmakov
Ta-Wei Ho
S. Hsu
D. Whiteson
Pierre Baldi
32
31
0
19 Oct 2020
Towards a Computer Vision Particle Flow
Towards a Computer Vision Particle Flow
F. Bello
S. Ganguly
Eilam Gross
Marumi Kado
M. Pitt
Lorenzo Santi
Jonathan Shlomi
75
49
0
19 Mar 2020
A Survey on The Expressive Power of Graph Neural Networks
A Survey on The Expressive Power of Graph Neural Networks
Ryoma Sato
159
170
0
09 Mar 2020
Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud
Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud
Weijing Shi
Ragunathan
R. Rajkumar
3DPC
139
615
0
02 Mar 2020
Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph
  Neural Networks
Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks
Minjie Wang
Da Zheng
Zihao Ye
Quan Gan
Mufei Li
...
J. Zhao
Haotong Zhang
Alex Smola
Jinyang Li
Zheng-Wei Zhang
AI4CE
GNN
182
731
0
03 Sep 2019
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
262
10,183
0
12 Dec 2018
Fast inference of deep neural networks in FPGAs for particle physics
Fast inference of deep neural networks in FPGAs for particle physics
Javier Mauricio Duarte
Song Han
Philip C. Harris
S. Jindariani
E. Kreinar
...
J. Ngadiuba
M. Pierini
R. Rivera
N. Tran
Zhenbin Wu
AI4CE
75
385
0
16 Apr 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
210
13,886
0
02 Dec 2016
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
255
1,394
0
01 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
1