ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.02426
  4. Cited By
OccamNets: Mitigating Dataset Bias by Favoring Simpler Hypotheses

OccamNets: Mitigating Dataset Bias by Favoring Simpler Hypotheses

5 April 2022
Robik Shrestha
Kushal Kafle
Christopher Kanan
    CML
ArXivPDFHTML

Papers citing "OccamNets: Mitigating Dataset Bias by Favoring Simpler Hypotheses"

17 / 17 papers shown
Title
INSIGHT: Explainable Weakly-Supervised Medical Image Analysis
INSIGHT: Explainable Weakly-Supervised Medical Image Analysis
Wenbo Zhang
Junyu Chen
Christopher Kanan
67
0
0
02 Dec 2024
Efficient Bias Mitigation Without Privileged Information
Efficient Bias Mitigation Without Privileged Information
Mateo Espinosa Zarlenga
Swami Sankaranarayanan
Jerone T. A. Andrews
Z. Shams
M. Jamnik
Alice Xiang
21
3
0
26 Sep 2024
Model Debiasing by Learnable Data Augmentation
Model Debiasing by Learnable Data Augmentation
Pietro Morerio
R. Ragonesi
Vittorio Murino
22
0
0
09 Aug 2024
What Variables Affect Out-Of-Distribution Generalization in Pretrained
  Models?
What Variables Affect Out-Of-Distribution Generalization in Pretrained Models?
Md Yousuf Harun
Kyungbok Lee
Jhair Gallardo
Giri Krishnan
Christopher Kanan
23
2
0
23 May 2024
DeNetDM: Debiasing by Network Depth Modulation
DeNetDM: Debiasing by Network Depth Modulation
Silpa Vadakkeeveetil Sreelatha
Adarsh Kappiyath
Anjan Dutta
26
2
1
28 Mar 2024
Partition-and-Debias: Agnostic Biases Mitigation via A Mixture of
  Biases-Specific Experts
Partition-and-Debias: Agnostic Biases Mitigation via A Mixture of Biases-Specific Experts
Jiaxuan Li
D. Vo
Hideki Nakayama
13
3
0
19 Aug 2023
Implicit Visual Bias Mitigation by Posterior Estimate Sharpening of a Bayesian Neural Network
Rebecca S Stone
Nishant Ravikumar
A. Bulpitt
David C. Hogg
BDL
25
0
0
29 Mar 2023
Overcoming Simplicity Bias in Deep Networks using a Feature Sieve
Overcoming Simplicity Bias in Deep Networks using a Feature Sieve
Rishabh Tiwari
Pradeep Shenoy
24
17
0
30 Jan 2023
Towards Disentangling Information Paths with Coded ResNeXt
Towards Disentangling Information Paths with Coded ResNeXt
Apostolos Avranas
Marios Kountouris
FAtt
12
1
0
10 Feb 2022
Diversify and Disambiguate: Learning From Underspecified Data
Diversify and Disambiguate: Learning From Underspecified Data
Yoonho Lee
Huaxiu Yao
Chelsea Finn
203
64
0
07 Feb 2022
Fighting Fire with Fire: Contrastive Debiasing without Bias-free Data
  via Generative Bias-transformation
Fighting Fire with Fire: Contrastive Debiasing without Bias-free Data via Generative Bias-transformation
Yeonsung Jung
Hajin Shim
J. Yang
Eunho Yang
17
7
0
02 Dec 2021
MLP-Mixer: An all-MLP Architecture for Vision
MLP-Mixer: An all-MLP Architecture for Vision
Ilya O. Tolstikhin
N. Houlsby
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
...
Andreas Steiner
Daniel Keysers
Jakob Uszkoreit
Mario Lucic
Alexey Dosovitskiy
239
2,554
0
04 May 2021
An Investigation of Why Overparameterization Exacerbates Spurious
  Correlations
An Investigation of Why Overparameterization Exacerbates Spurious Correlations
Shiori Sagawa
Aditi Raghunathan
Pang Wei Koh
Percy Liang
144
368
0
09 May 2020
Counterfactual Samples Synthesizing for Robust Visual Question Answering
Counterfactual Samples Synthesizing for Robust Visual Question Answering
Long Chen
Xin Yan
Jun Xiao
Hanwang Zhang
Shiliang Pu
Yueting Zhuang
OOD
AAML
132
287
0
14 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
888
0
02 Mar 2020
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
286
4,143
0
23 Aug 2019
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
948
20,214
0
17 Apr 2017
1