Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2204.07697
Cited By
Theory of Graph Neural Networks: Representation and Learning
16 April 2022
Stefanie Jegelka
GNN
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Theory of Graph Neural Networks: Representation and Learning"
50 / 56 papers shown
Title
Parameter-Efficient Conditioning for Material Generalization in Graph-Based Simulators
Naveen Raj Manoharan
Hassan Iqbal
Krishna Kumar
AI4CE
96
0
0
07 Nov 2025
On the Convergence and Size Transferability of Continuous-depth Graph Neural Networks
Mingsong Yan
Charles Kulick
Sui Tang
116
0
0
04 Oct 2025
On The Expressive Power of GNN Derivatives
Yam Eitan
Moshe Eliasof
Yoav Gelberg
Fabrizio Frasca
Guy Bar-Shalom
Haggai Maron
110
0
0
02 Oct 2025
What Expressivity Theory Misses: Message Passing Complexity for GNNs
Niklas Kemper
Tom Wollschlager
Stephan Günnemann
130
0
0
01 Sep 2025
On the Interplay between Graph Structure and Learning Algorithms in Graph Neural Networks
Junwei Su
Chuan Wu
72
0
0
20 Aug 2025
Exploring Graph-Transformer Out-of-Distribution Generalization Abilities
Itay Niv
Neta Rabin
OOD
93
0
0
25 Jun 2025
Weisfeiler and Leman Go Gambling: Why Expressive Lottery Tickets Win
Lorenz Kummer
Samir Moustafa
Anatol Ehrlich
Franka Bause
Nikolaus Suess
Wilfried Gansterer
Nils M. Kriege
148
0
0
04 Jun 2025
Causally Fair Node Classification on Non-IID Graph Data
Yucong Dai
Jun Liu
Yaowei Hu
Susan Gauch
Yongkai Wu
FaML
258
0
0
03 May 2025
Graph neural networks extrapolate out-of-distribution for shortest paths
Robert Nerem
Samantha Chen
Sanjoy Dasgupta
Yusu Wang
285
4
0
24 Mar 2025
Performance Heterogeneity in Graph Neural Networks: Lessons for Architecture Design and Preprocessing
Lukas Fesser
Melanie Weber
163
1
0
01 Mar 2025
Unveiling Mode Connectivity in Graph Neural Networks
Bingheng Li
Z. Chen
Haoyu Han
Shenglai Zeng
J. Liu
Shucheng Zhou
196
1
0
18 Feb 2025
Graph Neural Networks Are More Than Filters: Revisiting and Benchmarking from A Spectral Perspective
International Conference on Learning Representations (ICLR), 2024
Yushun Dong
Patrick Soga
Yinhan He
Song Wang
Jundong Li
243
2
0
10 Dec 2024
An Efficient Memory Module for Graph Few-Shot Class-Incremental Learning
Neural Information Processing Systems (NeurIPS), 2024
Dong Li
Aijia Zhang
Junqi Gao
Biqing Qi
GNN
147
6
0
11 Nov 2024
Enhancing Missing Data Imputation through Combined Bipartite Graph and Complete Directed Graph
Zhaoyang Zhang
Hongtu Zhu
Ziqi Chen
Yingjie Zhang
Hai Shu
220
0
0
07 Nov 2024
Deeper Insights into Deep Graph Convolutional Networks: Stability and Generalization
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2024
Guangrui Yang
Ming Li
Han Feng
Xiaosheng Zhuang
GNN
OOD
BDL
190
3
0
11 Oct 2024
The Role of Fibration Symmetries in Geometric Deep Learning
Osvaldo Velarde
Lucas Parra
Paolo Boldi
Hernan Makse
FedML
AI4CE
186
2
0
28 Aug 2024
Graph Classification with GNNs: Optimisation, Representation and Inductive Bias
European Conference on Artificial Intelligence (ECAI), 2024
P. Krishna Kumar a
H. G. Ramaswamy
198
0
0
17 Aug 2024
What Ails Generative Structure-based Drug Design: Expressivity is Too Little or Too Much?
International Conference on Artificial Intelligence and Statistics (AISTATS), 2024
Rafał Karczewski
Samuel Kaski
Markus Heinonen
Vikas Garg
285
0
0
12 Aug 2024
Foundations and Frontiers of Graph Learning Theory
Yu Huang
Min Zhou
Menglin Yang
Zhen Wang
Muhan Zhang
Jie Wang
Hong Xie
Hao Wang
Defu Lian
Enhong Chen
AI4CE
GNN
335
5
0
03 Jul 2024
Training-free Graph Neural Networks and the Power of Labels as Features
Ryoma Sato
248
5
0
30 Apr 2024
DE-HNN: An effective neural model for Circuit Netlist representation
Zhishang Luo
Truong-Son Hy
Puoya Tabaghi
Donghyeon Koh
Michael Defferrard
Elahe Rezaei
Ryan Carey
William Rhett Davis
Rajeev Jain
Yusu Wang
228
9
0
30 Mar 2024
Rethinking the Capacity of Graph Neural Networks for Branching Strategy
Neural Information Processing Systems (NeurIPS), 2024
Ziang Chen
Jialin Liu
Xiaohan Chen
Xinshang Wang
Wotao Yin
347
9
0
11 Feb 2024
Future Directions in the Theory of Graph Machine Learning
Christopher Morris
Fabrizio Frasca
Nadav Dym
Haggai Maron
.Ismail .Ilkan Ceylan
Ron Levie
Derek Lim
Michael M. Bronstein
Martin Grohe
Stefanie Jegelka
AI4CE
483
7
0
03 Feb 2024
Precedence-Constrained Winter Value for Effective Graph Data Valuation
Hongliang Chi
Wei Jin
Charu C. Aggarwal
Yao Ma
115
5
0
02 Feb 2024
Attacking Graph Neural Networks with Bit Flips: Weisfeiler and Lehman Go Indifferent
Lorenz Kummer
Samir Moustafa
Nils N. Kriege
Wilfried N. Gansterer
GNN
AAML
165
0
0
02 Nov 2023
Are GATs Out of Balance?
Neural Information Processing Systems (NeurIPS), 2023
Nimrah Mustafa
Aleksandar Bojchevski
R. Burkholz
294
8
0
11 Oct 2023
Optimizing Solution-Samplers for Combinatorial Problems: The Landscape of Policy-Gradient Methods
Neural Information Processing Systems (NeurIPS), 2023
Constantine Caramanis
Eleni Psaroudaki
Alkis Kalavasis
Vasilis Kontonis
Christos Tzamos
230
5
0
08 Oct 2023
How Graph Neural Networks Learn: Lessons from Training Dynamics
International Conference on Machine Learning (ICML), 2023
Chenxiao Yang
Qitian Wu
David Wipf
Ruoyu Sun
Junchi Yan
AI4CE
GNN
390
2
0
08 Oct 2023
On the Two Sides of Redundancy in Graph Neural Networks
Vidya Sagar Sharma
Samir Moustafa
Johannes Langguth
Wilfried N. Gansterer
Nils M. Kriege
235
2
0
06 Oct 2023
On the Robustness of Post-hoc GNN Explainers to Label Noise
Zhiqiang Zhong
Yangqianzi Jiang
Davide Mottin
AAML
NoLa
156
3
0
04 Sep 2023
A Survey of Graph Unlearning
Anwar Said
Hanyu Wang
Yuying Zhao
Tyler Derr
Mudassir Shabbir
W. Abbas
X. Koutsoukos
MU
374
11
0
23 Aug 2023
Learning Resource Allocation Policy: Vertex-GNN or Edge-GNN?
IEEE Transactions on Machine Learning in Communications and Networking (IEEE TMLCN), 2023
Yao Peng
Jia Guo
Chenyang Yang
222
28
0
24 Jul 2023
What can a Single Attention Layer Learn? A Study Through the Random Features Lens
Neural Information Processing Systems (NeurIPS), 2023
Hengyu Fu
Tianyu Guo
Yu Bai
Song Mei
MLT
169
34
0
21 Jul 2023
On the power of graph neural networks and the role of the activation function
Sammy Khalife
A. Basu
342
9
0
10 Jul 2023
Limits, approximation and size transferability for GNNs on sparse graphs via graphops
Neural Information Processing Systems (NeurIPS), 2023
Thien Le
Stefanie Jegelka
120
13
0
07 Jun 2023
Learning to Extrapolate: A Transductive Approach
International Conference on Learning Representations (ICLR), 2023
Aviv Netanyahu
Abhishek Gupta
Max Simchowitz
Jianchao Tan
Pulkit Agrawal
219
19
0
27 Apr 2023
Convergence of Message Passing Graph Neural Networks with Generic Aggregation On Large Random Graphs
Matthieu Cordonnier
Nicolas Keriven
Nicolas M Tremblay
Samuel Vaiter
GNN
436
12
0
21 Apr 2023
Descriptive complexity for distributed computing with circuits
International Symposium on Mathematical Foundations of Computer Science (MFCS), 2023
Veeti Ahvonen
Damian Heiman
L. Hella
Antti Kuusisto
199
4
0
08 Mar 2023
Neural Algorithmic Reasoning with Causal Regularisation
International Conference on Machine Learning (ICML), 2023
Beatrice Bevilacqua
Kyriacos Nikiforou
Borja Ibarz
Ioana Bica
Michela Paganini
Charles Blundell
Jovana Mitrović
Petar Velivcković
OOD
CML
NAI
311
34
0
20 Feb 2023
Knowledge-augmented Graph Machine Learning for Drug Discovery: A Survey from Precision to Interpretability
ACM Computing Surveys (ACM Comput. Surv.), 2023
Zhiqiang Zhong
A. Barkova
Davide Mottin
162
11
0
16 Feb 2023
Generalization in Graph Neural Networks: Improved PAC-Bayesian Bounds on Graph Diffusion
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Haotian Ju
Dongyue Li
Aneesh Sharma
Hongyang R. Zhang
222
45
0
09 Feb 2023
On Over-Squashing in Message Passing Neural Networks: The Impact of Width, Depth, and Topology
International Conference on Machine Learning (ICML), 2023
Francesco Di Giovanni
Lorenzo Giusti
Federico Barbero
Giulia Luise
Pietro Lio
Michael M. Bronstein
337
165
0
06 Feb 2023
Graph Neural Networks can Recover the Hidden Features Solely from the Graph Structure
International Conference on Machine Learning (ICML), 2023
Ryoma Sato
302
8
0
26 Jan 2023
On the Expressive Power of Geometric Graph Neural Networks
International Conference on Machine Learning (ICML), 2023
Chaitanya K. Joshi
Cristian Bodnar
Simon Mathis
Taco Cohen
Pietro Liò
355
113
0
23 Jan 2023
Exponentially Improving the Complexity of Simulating the Weisfeiler-Lehman Test with Graph Neural Networks
Neural Information Processing Systems (NeurIPS), 2022
Anders Aamand
Justin Y. Chen
Piotr Indyk
Shyam Narayanan
R. Rubinfeld
Nicholas Schiefer
Sandeep Silwal
Tal Wagner
224
25
0
06 Nov 2022
On Classification Thresholds for Graph Attention with Edge Features
Kimon Fountoulakis
Dake He
Silvio Lattanzi
Bryan Perozzi
Anton Tsitsulin
Shenghao Yang
GNN
235
6
0
18 Oct 2022
Analysis of Convolutions, Non-linearity and Depth in Graph Neural Networks using Neural Tangent Kernel
Mahalakshmi Sabanayagam
Pascal Esser
Debarghya Ghoshdastidar
281
3
0
18 Oct 2022
Theory for Equivariant Quantum Neural Networks
PRX Quantum (PRX Quantum), 2022
Quynh T. Nguyen
Louis Schatzki
Paolo Braccia
Michael Ragone
Patrick J. Coles
F. Sauvage
Martín Larocca
M. Cerezo
243
111
0
16 Oct 2022
Weisfeiler-Lehman goes Dynamic: An Analysis of the Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs
Neural Networks (NN), 2022
Silvia Beddar-Wiesing
Giuseppe Alessio D’Inverno
C. Graziani
Veronica Lachi
Alice Moallemy-Oureh
F. Scarselli
J. M. Thomas
225
13
0
08 Oct 2022
Tree Mover's Distance: Bridging Graph Metrics and Stability of Graph Neural Networks
Neural Information Processing Systems (NeurIPS), 2022
Ching-Yao Chuang
Stefanie Jegelka
OOD
160
43
0
04 Oct 2022
1
2
Next