Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2204.10464
Cited By
Towards Involving End-users in Interactive Human-in-the-loop AI Fairness
22 April 2022
Yuri Nakao
Simone Stumpf
Subeida Ahmed
A. Naseer
Lorenzo Strappelli
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Involving End-users in Interactive Human-in-the-loop AI Fairness"
17 / 17 papers shown
Title
TA3: Testing Against Adversarial Attacks on Machine Learning Models
Yuanzhe Jin
Min Chen
31
0
0
06 Oct 2024
Understanding Decision Subjects' Engagement with and Perceived Fairness of AI Models When Opportunities of Qualification Improvement Exist
Meric Altug Gemalmaz
Ming Yin
24
0
0
04 Oct 2024
Interactive Counterfactual Exploration of Algorithmic Harms in Recommender Systems
Yongsu Ahn
Quinn K. Wolter
Jonilyn Dick
Janet Dick
Yu-Ru Lin
HAI
37
0
0
10 Sep 2024
Noise-Free Explanation for Driving Action Prediction
Hongbo Zhu
Theodor Wulff
R. S. Maharjan
Jinpei Han
Angelo Cangelosi
AAML
FAtt
32
0
0
08 Jul 2024
From Explainable to Interactive AI: A Literature Review on Current Trends in Human-AI Interaction
Muhammad Raees
Inge Meijerink
Ioanna Lykourentzou
Vassilis-Javed Khan
Konstantinos Papangelis
30
24
0
23 May 2024
Design Requirements for Human-Centered Graph Neural Network Explanations
Pantea Habibi
Peyman Baghershahi
Sourav Medya
Debaleena Chattopadhyay
35
1
0
11 May 2024
Mapping the Potential of Explainable AI for Fairness Along the AI Lifecycle
Luca Deck
Astrid Schomacker
Timo Speith
Jakob Schöffer
Lena Kästner
Niklas Kühl
41
4
0
29 Apr 2024
Fair Machine Guidance to Enhance Fair Decision Making in Biased People
Mingzhe Yang
Hiromi Arai
Naomi Yamashita
Yukino Baba
FaML
34
6
0
08 Apr 2024
Break Out of a Pigeonhole: A Unified Framework for Examining Miscalibration, Bias, and Stereotype in Recommender Systems
Yongsu Ahn
Yu-Ru Lin
CML
32
3
0
29 Dec 2023
Explainable AI is Responsible AI: How Explainability Creates Trustworthy and Socially Responsible Artificial Intelligence
Stephanie B. Baker
Wei Xiang
XAI
31
5
0
04 Dec 2023
A Critical Survey on Fairness Benefits of Explainable AI
Luca Deck
Jakob Schoeffer
Maria De-Arteaga
Niklas Kühl
31
10
0
15 Oct 2023
Beyond XAI:Obstacles Towards Responsible AI
Yulu Pi
34
2
0
07 Sep 2023
Fairness Evaluation in Text Classification: Machine Learning Practitioner Perspectives of Individual and Group Fairness
Zahra Ashktorab
Benjamin Hoover
Mayank Agarwal
Casey Dugan
Werner Geyer
Han Yang
Mikhail Yurochkin
FaML
25
17
0
01 Mar 2023
Improving Fairness in Adaptive Social Exergames via Shapley Bandits
Robert C. Gray
Jennifer Villareale
T. Fox
Diane H Dallal
Santiago Ontañón
D. Arigo
S. Jabbari
Jichen Zhu
18
4
0
18 Feb 2023
A Systematic Literature Review of Human-Centered, Ethical, and Responsible AI
Mohammad Tahaei
Marios Constantinides
Daniele Quercia
Michael J. Muller
AI4TS
49
8
0
10 Feb 2023
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
192
742
0
13 Dec 2018
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
251
3,683
0
28 Feb 2017
1