Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.03195
Cited By
Symphony: Learning Realistic and Diverse Agents for Autonomous Driving Simulation
6 May 2022
Maximilian Igl
Daewoo Kim
Alex Kuefler
Paul Mougin
Punit Shah
K. Shiarlis
Drago Anguelov
Mark Palatucci
Brandyn White
Shimon Whiteson
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Symphony: Learning Realistic and Diverse Agents for Autonomous Driving Simulation"
7 / 57 papers shown
Title
Critic Sequential Monte Carlo
Vasileios Lioutas
J. Lavington
Justice Sefas
Matthew Niedoba
Yunpeng Liu
Berend Zwartsenberg
Setareh Dabiri
Frank D. Wood
Adam Scibior
40
7
0
30 May 2022
A Driver-Vehicle Model for ADS Scenario-based Testing
Rodrigo Queiroz
Divit Sharma
Ricardo Diniz Caldas
Krzysztof Czarnecki
S. García
Thorsten Berger
Patrizio Pelliccione
6
10
0
05 May 2022
Fail-Safe Adversarial Generative Imitation Learning
Philipp Geiger
C. Straehle
GAN
16
2
0
03 Mar 2022
Large Scale Interactive Motion Forecasting for Autonomous Driving : The Waymo Open Motion Dataset
Scott Ettinger
Shuyang Cheng
Benjamin Caine
Chenxi Liu
Hang Zhao
...
Jiquan Ngiam
Vijay Vasudevan
Alexander McCauley
Jonathon Shlens
Drago Anguelov
137
531
0
20 Apr 2021
IntentNet: Learning to Predict Intention from Raw Sensor Data
Sergio Casas
Wenjie Luo
R. Urtasun
3DPC
157
365
0
20 Jan 2021
TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors
Simon Suo
S. Regalado
Sergio Casas
R. Urtasun
145
224
0
17 Jan 2021
SMARTS: Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving
Ming Zhou
Jun-Jie Luo
Julian Villela
Yaodong Yang
David Rusu
...
H. Ammar
Hongbo Zhang
Wulong Liu
Jianye Hao
Jun Wang
134
193
0
19 Oct 2020
Previous
1
2