Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.10032
Cited By
Survey on Fair Reinforcement Learning: Theory and Practice
20 May 2022
Pratik Gajane
A. Saxena
M. Tavakol
George Fletcher
Mykola Pechenizkiy
FaML
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Survey on Fair Reinforcement Learning: Theory and Practice"
6 / 6 papers shown
Title
DECAF: Learning to be Fair in Multi-agent Resource Allocation
Ashwin Kumar
William Yeoh
76
1
0
06 Feb 2025
Fair Resource Allocation in Weakly Coupled Markov Decision Processes
Xiaohui Tu
Yossiri Adulyasak
Nima Akbarzadeh
Erick Delage
29
0
0
14 Nov 2024
Achieving Counterfactual Fairness for Causal Bandit
Wen Huang
Lu Zhang
Xintao Wu
CML
101
22
0
21 Sep 2021
Achieving User-Side Fairness in Contextual Bandits
Wen Huang
Kevin Labille
Xintao Wu
Dongwon Lee
Neil T. Heffernan
FaML
64
18
0
22 Oct 2020
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
286
4,143
0
23 Aug 2019
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
185
2,079
0
24 Oct 2016
1