Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.13532
Cited By
Selective Classification Via Neural Network Training Dynamics
26 May 2022
Stephan Rabanser
Anvith Thudi
Kimia Hamidieh
Adam Dziedzic
Nicolas Papernot
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Selective Classification Via Neural Network Training Dynamics"
22 / 22 papers shown
Title
Protecting against simultaneous data poisoning attacks
Neel Alex
Shoaib Ahmed Siddiqui
Amartya Sanyal
David M. Krueger
AAML
27
1
0
23 Aug 2024
Confidence-aware Contrastive Learning for Selective Classification
Yu-Chang Wu
Shen-Huan Lyu
Haopu Shang
Xiangyu Wang
Chao Qian
24
3
0
07 Jun 2024
To Believe or Not to Believe Your LLM
Yasin Abbasi-Yadkori
Ilja Kuzborskij
András György
Csaba Szepesvári
UQCV
53
39
0
04 Jun 2024
Selective Explanations
Lucas Monteiro Paes
Dennis L. Wei
Flavio du Pin Calmon
FAtt
17
0
0
29 May 2024
Conformal Alignment: Knowing When to Trust Foundation Models with Guarantees
Yu Gui
Ying Jin
Zhimei Ren
MedIm
27
18
0
16 May 2024
Attacking Bayes: On the Adversarial Robustness of Bayesian Neural Networks
Yunzhen Feng
Tim G. J. Rudner
Nikolaos Tsilivis
Julia Kempe
AAML
BDL
26
1
0
27 Apr 2024
Mitigating LLM Hallucinations via Conformal Abstention
Yasin Abbasi-Yadkori
Ilja Kuzborskij
David Stutz
András György
Adam Fisch
...
Wei-Hung Weng
Yao-Yuan Yang
Csaba Szepesvári
A. Cemgil
Nenad Tomašev
HILM
24
12
0
04 Apr 2024
LTAU-FF: Loss Trajectory Analysis for Uncertainty in Atomistic Force Fields
Joshua A. Vita
Amit Samanta
Fei Zhou
Vincenzo Lordi
8
2
0
01 Feb 2024
Function-Space Regularization in Neural Networks: A Probabilistic Perspective
Tim G. J. Rudner
Sanyam Kapoor
Shikai Qiu
A. Wilson
24
12
0
28 Dec 2023
Advancing Perception in Artificial Intelligence through Principles of Cognitive Science
Palaash Agrawal
Cheston Tan
Heena Rathore
27
1
0
13 Oct 2023
Gradients Look Alike: Sensitivity is Often Overestimated in DP-SGD
Anvith Thudi
Hengrui Jia
Casey Meehan
Ilia Shumailov
Nicolas Papernot
4
3
0
01 Jul 2023
Training Private Models That Know What They Don't Know
Stephan Rabanser
Anvith Thudi
Abhradeep Thakurta
Krishnamurthy Dvijotham
Nicolas Papernot
6
7
0
28 May 2023
Distilling BlackBox to Interpretable models for Efficient Transfer Learning
Shantanu Ghosh
K. Yu
Kayhan Batmanghelich
9
3
0
26 May 2023
ASPEST: Bridging the Gap Between Active Learning and Selective Prediction
Jiefeng Chen
Jinsung Yoon
Sayna Ebrahimi
Sercan Ö. Arik
S. Jha
Tomas Pfister
23
1
0
07 Apr 2023
Tackling Shortcut Learning in Deep Neural Networks: An Iterative Approach with Interpretable Models
Shantanu Ghosh
K. Yu
Forough Arabshahi
Kayhan Batmanghelich
25
2
0
20 Feb 2023
Beyond Distribution Shift: Spurious Features Through the Lens of Training Dynamics
Nihal Murali
A. Puli
Ke Yu
Rajesh Ranganath
Kayhan Batmanghelich
AAML
22
7
0
18 Feb 2023
Selective classification using a robust meta-learning approach
Nishant Jain
Karthikeyan Shanmugam
Pradeep Shenoy
OOD
13
2
0
12 Dec 2022
Metadata Archaeology: Unearthing Data Subsets by Leveraging Training Dynamics
Shoaib Ahmed Siddiqui
Nitarshan Rajkumar
Tegan Maharaj
David M. Krueger
Sara Hooker
20
27
0
20 Sep 2022
Tubes Among Us: Analog Attack on Automatic Speaker Identification
Shimaa Ahmed
Yash R. Wani
Ali Shahin Shamsabadi
Mohammad Yaghini
Ilia Shumailov
Nicolas Papernot
Kassem Fawaz
AAML
25
3
0
06 Feb 2022
Estimating Example Difficulty Using Variance of Gradients
Chirag Agarwal
Daniel D'souza
Sara Hooker
190
103
0
26 Aug 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
245
9,042
0
06 Jun 2015
1