ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.14027
  4. Cited By
Learning Dynamical Systems via Koopman Operator Regression in
  Reproducing Kernel Hilbert Spaces
v1v2v3v4 (latest)

Learning Dynamical Systems via Koopman Operator Regression in Reproducing Kernel Hilbert Spaces

Neural Information Processing Systems (NeurIPS), 2022
27 May 2022
Vladimir Kostic
P. Novelli
Andreas Maurer
C. Ciliberto
Lorenzo Rosasco
Massimiliano Pontil
ArXiv (abs)PDFHTML

Papers citing "Learning Dynamical Systems via Koopman Operator Regression in Reproducing Kernel Hilbert Spaces"

28 / 28 papers shown
Conformal Online Learning of Deep Koopman Linear Embeddings
Conformal Online Learning of Deep Koopman Linear Embeddings
Ben Gao
Jordan Patracone
Stéphane Chrétien
Olivier Alata
89
1
0
16 Nov 2025
Sequence Modeling with Spectral Mean Flows
Sequence Modeling with Spectral Mean Flows
Jinwoo Kim
Max Beier
Nicolas Hoischen
Nayun Kim
Seunghoon Hong
BDL
170
0
0
17 Oct 2025
Learning functions, operators and dynamical systems with kernels
Learning functions, operators and dynamical systems with kernels
Lorenzo Rosasco
118
0
0
22 Sep 2025
A Kernel-based Stochastic Approximation Framework for Nonlinear Operator Learning
A Kernel-based Stochastic Approximation Framework for Nonlinear Operator Learning
Jia-Qi Yang
Lei Shi
203
0
0
14 Sep 2025
Universal Learning of Nonlinear Dynamics
Universal Learning of Nonlinear Dynamics
Evan Dogariu
Anand Brahmbhatt
Elad Hazan
121
1
0
16 Aug 2025
Efficient Parametric SVD of Koopman Operator for Stochastic Dynamical Systems
Efficient Parametric SVD of Koopman Operator for Stochastic Dynamical Systems
Minchan Jeong
J. Jon Ryu
Se-Young Yun
G. Wornell
255
2
0
09 Jul 2025
Predicting the Energy Landscape of Stochastic Dynamical System via Physics-informed Self-supervised Learning
Predicting the Energy Landscape of Stochastic Dynamical System via Physics-informed Self-supervised LearningInternational Conference on Learning Representations (ICLR), 2025
Ruikun Li
Huandong Wang
Qingmin Liao
Yong Li
134
2
0
24 Feb 2025
Koopman-Equivariant Gaussian ProcessesInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2025
Nicolas Hoischen
Max Beier
Armin Lederer
A. Capone
Roland Toth
Sandra Hirche
AI4TS
294
6
0
10 Feb 2025
Koopman Learning with Episodic Memory
Koopman Learning with Episodic Memory
William T. Redman
Dean Huang
M. Fonoberova
Igor Mezić
316
4
0
08 Jan 2025
Kernel-Based Optimal Control: An Infinitesimal Generator Approach
Kernel-Based Optimal Control: An Infinitesimal Generator ApproachConference on Learning for Dynamics & Control (L4DC), 2024
Nicolas Hoischen
Nicolas Hosichen
Tobias Wittmann
Jan Brüdigam
Sandra Hirche
Boris Houska
405
2
0
02 Dec 2024
Laplace Transform Based Low-Complexity Learning of Continuous Markov Semigroups
Laplace Transform Based Low-Complexity Learning of Continuous Markov Semigroups
Vladimir Kostic
Karim Lounici
Helene Halconruy
Timothée Devergne
P. Novelli
Massimiliano Pontil
282
2
0
18 Oct 2024
Long-Context Linear System Identification
Long-Context Linear System IdentificationInternational Conference on Learning Representations (ICLR), 2024
Oğuz Kaan Yüksel
Mathieu Even
Nicolas Flammarion
349
1
0
08 Oct 2024
Gaussian kernel expansion with basis functions uniformly bounded in
  $\mathcal{L}_{\infty}$
Gaussian kernel expansion with basis functions uniformly bounded in L∞\mathcal{L}_{\infty}L∞​
M. Bisiacco
G. Pillonetto
190
1
0
02 Oct 2024
Data-Driven Stochastic Optimal Control in Reproducing Kernel Hilbert Spaces
Data-Driven Stochastic Optimal Control in Reproducing Kernel Hilbert Spaces
Nicolas Hoischen
Nicolas Hoischen
Roland Toth
Sandra Hirche
Boris Houska
336
2
0
23 Jul 2024
Operator World Models for Reinforcement Learning
Operator World Models for Reinforcement Learning
P. Novelli
Marco Prattico
Massimiliano Pontil
C. Ciliberto
OffRL
333
2
0
28 Jun 2024
Linear quadratic control of nonlinear systems with Koopman operator learning and the Nyström method
Linear quadratic control of nonlinear systems with Koopman operator learning and the Nyström method
Edoardo Caldarelli
Antoine Chatalic
Adrià Colomé
C. Molinari
C. Ocampo‐Martinez
Carme Torras
Lorenzo Rosasco
455
4
0
05 Mar 2024
Operator Learning: Algorithms and Analysis
Operator Learning: Algorithms and Analysis
Nikola B. Kovachki
S. Lanthaler
Andrew M. Stuart
459
69
0
24 Feb 2024
Consistent Long-Term Forecasting of Ergodic Dynamical Systems
Consistent Long-Term Forecasting of Ergodic Dynamical Systems
Prune Inzerilli
Vladimir Kostic
Karim Lounici
P. Novelli
Massimiliano Pontil
208
9
0
20 Dec 2023
Dynamics Harmonic Analysis of Robotic Systems: Application in
  Data-Driven Koopman Modelling
Dynamics Harmonic Analysis of Robotic Systems: Application in Data-Driven Koopman ModellingConference on Learning for Dynamics & Control (L4DC), 2023
Daniel Felipe Ordoñez Apraez
Vladimir Kostic
Giulio Turrisi
P. Novelli
Carlos Mastalli
Claudio Semini
Massimiliano Pontil
292
5
0
12 Dec 2023
Neural Koopman prior for data assimilation
Neural Koopman prior for data assimilationIEEE Transactions on Signal Processing (IEEE TSP), 2023
Anthony Frion
Lucas Drumetz
M. Dalla Mura
Guillaume Tochon
Abdeldjalil Aissa El Bey
AI4TSAI4CE
293
5
0
11 Sep 2023
Beyond expectations: Residual Dynamic Mode Decomposition and Variance
  for Stochastic Dynamical Systems
Beyond expectations: Residual Dynamic Mode Decomposition and Variance for Stochastic Dynamical SystemsNonlinear dynamics (Nonlinear Dyn.), 2023
Matthew J. Colbrook
Qin Li
Ryan V. Raut
Alex Townsend
311
26
0
21 Aug 2023
Koopman Kernel Regression
Koopman Kernel RegressionNeural Information Processing Systems (NeurIPS), 2023
Nicolas Hoischen
Maximilian Beier
Armin Lederer
Roland Toth
Eyke Hüllermeier
Sandra Hirche
AI4TS
240
27
0
25 May 2023
Discovering Causal Relations and Equations from Data
Discovering Causal Relations and Equations from DataPhysics reports (Phys. Rep.), 2023
Gustau Camps-Valls
Andreas Gerhardus
Urmi Ninad
Gherardo Varando
Georg Martius
E. Balaguer-Ballester
Ricardo Vinuesa
Emiliano Díaz
L. Zanna
Jakob Runge
PINNAI4ClAI4CECML
242
112
0
21 May 2023
Resurrecting Recurrent Neural Networks for Long Sequences
Resurrecting Recurrent Neural Networks for Long SequencesInternational Conference on Machine Learning (ICML), 2023
Antonio Orvieto
Samuel L. Smith
Albert Gu
Anushan Fernando
Çağlar Gülçehre
Razvan Pascanu
Soham De
497
420
0
11 Mar 2023
Sharp Spectral Rates for Koopman Operator Learning
Sharp Spectral Rates for Koopman Operator LearningNeural Information Processing Systems (NeurIPS), 2023
Vladimir Kostic
Karim Lounici
P. Novelli
Massimiliano Pontil
570
36
0
03 Feb 2023
Learning dynamical systems: an example from open quantum system dynamics
Learning dynamical systems: an example from open quantum system dynamics
P. Novelli
AI4CE
219
0
0
12 Nov 2022
Spectral Representation Learning for Conditional Moment Models
Spectral Representation Learning for Conditional Moment Models
Ziyu Wang
Yucen Luo
Yueru Li
Chao Ding
Bernhard Schölkopf
CML
302
12
0
29 Oct 2022
Ensemble forecasts in reproducing kernel Hilbert space family
Ensemble forecasts in reproducing kernel Hilbert space family
Benjamin Dufée
Berenger Hug
É. Mémin
G. Tissot
418
2
0
29 Jul 2022
1