ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.15834
  4. Cited By
Attribution-based Explanations that Provide Recourse Cannot be Robust

Attribution-based Explanations that Provide Recourse Cannot be Robust

31 May 2022
H. Fokkema
R. D. Heide
T. Erven
    FAtt
ArXivPDFHTML

Papers citing "Attribution-based Explanations that Provide Recourse Cannot be Robust"

16 / 16 papers shown
Title
Fourier Feature Attribution: A New Efficiency Attribution Method
Fourier Feature Attribution: A New Efficiency Attribution Method
Zechen Liu
Feiyang Zhang
Wei Song
X. Li
Wei Wei
FAtt
57
0
0
02 Apr 2025
Feature Responsiveness Scores: Model-Agnostic Explanations for Recourse
Feature Responsiveness Scores: Model-Agnostic Explanations for Recourse
Seung Hyun Cheon
Anneke Wernerfelt
Sorelle A. Friedler
Berk Ustun
FaML
FAtt
30
0
0
29 Oct 2024
Provably Better Explanations with Optimized Aggregation of Feature
  Attributions
Provably Better Explanations with Optimized Aggregation of Feature Attributions
Thomas Decker
Ananta R. Bhattarai
Jindong Gu
Volker Tresp
Florian Buettner
18
2
0
07 Jun 2024
Robust Knowledge Extraction from Large Language Models using Social
  Choice Theory
Robust Knowledge Extraction from Large Language Models using Social Choice Theory
Nico Potyka
Yuqicheng Zhu
Yunjie He
Evgeny Kharlamov
Steffen Staab
11
3
0
22 Dec 2023
A Quantitatively Interpretable Model for Alzheimer's Disease Prediction
  Using Deep Counterfactuals
A Quantitatively Interpretable Model for Alzheimer's Disease Prediction Using Deep Counterfactuals
Kwanseok Oh
Da-Woon Heo
A. Mulyadi
Wonsik Jung
Eunsong Kang
Kun Ho Lee
Heung-Il Suk
14
1
0
05 Oct 2023
Don't trust your eyes: on the (un)reliability of feature visualizations
Don't trust your eyes: on the (un)reliability of feature visualizations
Robert Geirhos
Roland S. Zimmermann
Blair Bilodeau
Wieland Brendel
Been Kim
FAtt
OOD
11
25
0
07 Jun 2023
Explainable Contextual Anomaly Detection using Quantile Regression
  Forests
Explainable Contextual Anomaly Detection using Quantile Regression Forests
Zhong Li
M. Leeuwen
AI4TS
37
15
0
22 Feb 2023
Impossibility Theorems for Feature Attribution
Impossibility Theorems for Feature Attribution
Blair Bilodeau
Natasha Jaques
Pang Wei Koh
Been Kim
FAtt
18
68
0
22 Dec 2022
Do graph neural networks learn traditional jet substructure?
Do graph neural networks learn traditional jet substructure?
Farouk Mokhtar
Raghav Kansal
Javier Mauricio Duarte
GNN
23
11
0
17 Nov 2022
SoK: Explainable Machine Learning for Computer Security Applications
SoK: Explainable Machine Learning for Computer Security Applications
A. Nadeem
D. Vos
Clinton Cao
Luca Pajola
Simon Dieck
Robert Baumgartner
S. Verwer
12
40
0
22 Aug 2022
Toward Transparent AI: A Survey on Interpreting the Inner Structures of
  Deep Neural Networks
Toward Transparent AI: A Survey on Interpreting the Inner Structures of Deep Neural Networks
Tilman Raukur
A. Ho
Stephen Casper
Dylan Hadfield-Menell
AAML
AI4CE
18
123
0
27 Jul 2022
OpenXAI: Towards a Transparent Evaluation of Model Explanations
OpenXAI: Towards a Transparent Evaluation of Model Explanations
Chirag Agarwal
Dan Ley
Satyapriya Krishna
Eshika Saxena
Martin Pawelczyk
Nari Johnson
Isha Puri
Marinka Zitnik
Himabindu Lakkaraju
XAI
6
139
0
22 Jun 2022
RoCourseNet: Distributionally Robust Training of a Prediction Aware
  Recourse Model
RoCourseNet: Distributionally Robust Training of a Prediction Aware Recourse Model
Hangzhi Guo
Feiran Jia
Jinghui Chen
Anna Squicciarini
A. Yadav
OOD
26
7
0
01 Jun 2022
On the Robustness of Sparse Counterfactual Explanations to Adverse
  Perturbations
On the Robustness of Sparse Counterfactual Explanations to Adverse Perturbations
M. Virgolin
Saverio Fracaros
CML
19
36
0
22 Jan 2022
Consistent Counterfactuals for Deep Models
Consistent Counterfactuals for Deep Models
Emily Black
Zifan Wang
Matt Fredrikson
Anupam Datta
BDL
OffRL
OOD
36
43
0
06 Oct 2021
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
225
3,658
0
28 Feb 2017
1