Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.01558
Cited By
Disentangling Epistemic and Aleatoric Uncertainty in Reinforcement Learning
3 June 2022
Bertrand Charpentier
Ransalu Senanayake
Mykel Kochenderfer
Stephan Günnemann
PER
UD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Disentangling Epistemic and Aleatoric Uncertainty in Reinforcement Learning"
6 / 6 papers shown
Title
Disentangling Uncertainty for Safe Social Navigation using Deep Reinforcement Learning
Daniel Flögel
Marcos Gómez Villafane
Joshua Ransiek
Sören Hohmann
23
0
0
16 Sep 2024
Generalized Out-of-Distribution Detection: A Survey
Jingkang Yang
Kaiyang Zhou
Yixuan Li
Ziwei Liu
171
870
0
21 Oct 2021
Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit Partial Observability
Dibya Ghosh
Jad Rahme
Aviral Kumar
Amy Zhang
Ryan P. Adams
Sergey Levine
OffRL
270
107
0
13 Jul 2021
Out-of-Distribution Dynamics Detection: RL-Relevant Benchmarks and Results
Mohamad H. Danesh
Alan Fern
94
14
0
11 Jul 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
1