Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.02923
Cited By
Understanding Machine Learning Practitioners' Data Documentation Perceptions, Needs, Challenges, and Desiderata
6 June 2022
A. Heger
Elizabeth B. Marquis
Mihaela Vorvoreanu
Hanna M. Wallach
J. W. Vaughan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding Machine Learning Practitioners' Data Documentation Perceptions, Needs, Challenges, and Desiderata"
10 / 10 papers shown
Title
My Precious Crash Data: Barriers and Opportunities in Encouraging Autonomous Driving Companies to Share Safety-Critical Data
Hauke Sandhaus
Angel Hsing-Chi Hwang
Wendy Ju
Qian Yang
22
1
0
10 Apr 2025
SPHERE: An Evaluation Card for Human-AI Systems
Qianou Ma
Dora Zhao
Xinran Zhao
Chenglei Si
Chenyang Yang
Ryan Louie
Ehud Reiter
Diyi Yang
Tongshuang Wu
ALM
50
0
0
24 Mar 2025
Towards a Non-Ideal Methodological Framework for Responsible ML
Ramaravind Kommiya Mothilal
Shion Guha
Syed Ishtiaque Ahmed
44
7
0
20 Jan 2024
AI Transparency in the Age of LLMs: A Human-Centered Research Roadmap
Q. V. Liao
J. Vaughan
38
158
0
02 Jun 2023
Angler: Helping Machine Translation Practitioners Prioritize Model Improvements
Samantha Robertson
Zijie J. Wang
Dominik Moritz
Mary Beth Kery
Fred Hohman
35
15
0
12 Apr 2023
Designerly Understanding: Information Needs for Model Transparency to Support Design Ideation for AI-Powered User Experience
Q. V. Liao
Hariharan Subramonyam
Jennifer Wang
Jennifer Wortman Vaughan
HAI
33
58
0
21 Feb 2023
Out of Context: Investigating the Bias and Fairness Concerns of "Artificial Intelligence as a Service"
Kornel Lewicki
M. S. Lee
Jennifer Cobbe
Jatinder Singh
31
21
0
02 Feb 2023
Trust in Data Science: Collaboration, Translation, and Accountability in Corporate Data Science Projects
Samir Passi
S. Jackson
171
108
0
09 Feb 2020
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
192
742
0
13 Dec 2018
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
207
2,084
0
24 Oct 2016
1