Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.03945
Cited By
Challenges in Applying Explainability Methods to Improve the Fairness of NLP Models
8 June 2022
Esma Balkir
S. Kiritchenko
I. Nejadgholi
Kathleen C. Fraser
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Challenges in Applying Explainability Methods to Improve the Fairness of NLP Models"
20 / 20 papers shown
Title
Gender Bias in Explainability: Investigating Performance Disparity in Post-hoc Methods
Mahdi Dhaini
Ege Erdogan
Nils Feldhus
Gjergji Kasneci
39
0
0
02 May 2025
MAPX: An explainable model-agnostic framework for the detection of false information on social media networks
Sarah Condran
Michael Bewong
Selasi Kwashie
Md Zahidul Islam
Irfan Altas
Joshua Condran
23
0
0
13 Sep 2024
On Behalf of the Stakeholders: Trends in NLP Model Interpretability in the Era of LLMs
Nitay Calderon
Roi Reichart
32
10
0
27 Jul 2024
Mapping the Potential of Explainable AI for Fairness Along the AI Lifecycle
Luca Deck
Astrid Schomacker
Timo Speith
Jakob Schöffer
Lena Kästner
Niklas Kühl
33
4
0
29 Apr 2024
Procedural Fairness in Machine Learning
Ziming Wang
Changwu Huang
Xin Yao
FaML
26
0
0
02 Apr 2024
On the Interplay between Fairness and Explainability
Stephanie Brandl
Emanuele Bugliarello
Ilias Chalkidis
FaML
22
4
0
25 Oct 2023
Towards Conceptualization of "Fair Explanation": Disparate Impacts of anti-Asian Hate Speech Explanations on Content Moderators
Tin Nguyen
Jiannan Xu
Aayushi Roy
Hal Daumé
Marine Carpuat
17
5
0
23 Oct 2023
A Critical Survey on Fairness Benefits of Explainable AI
Luca Deck
Jakob Schoeffer
Maria De-Arteaga
Niklas Kühl
13
10
0
15 Oct 2023
Beyond XAI:Obstacles Towards Responsible AI
Yulu Pi
19
2
0
07 Sep 2023
Concept-Based Explanations to Test for False Causal Relationships Learned by Abusive Language Classifiers
I. Nejadgholi
S. Kiritchenko
Kathleen C. Fraser
Esma Balkir
11
0
0
04 Jul 2023
Being Right for Whose Right Reasons?
Terne Sasha Thorn Jakobsen
Laura Cabello
Anders Søgaard
19
10
0
01 Jun 2023
Counterfactuals of Counterfactuals: a back-translation-inspired approach to analyse counterfactual editors
Giorgos Filandrianos
Edmund Dervakos
Orfeas Menis-Mastromichalakis
Chrysoula Zerva
Giorgos Stamou
AAML
13
4
0
26 May 2023
XMD: An End-to-End Framework for Interactive Explanation-Based Debugging of NLP Models
Dong-Ho Lee
Akshen Kadakia
Brihi Joshi
Aaron Chan
Ziyi Liu
...
Takashi Shibuya
Ryosuke Mitani
Toshiyuki Sekiya
Jay Pujara
Xiang Ren
LRM
24
9
0
30 Oct 2022
Towards Procedural Fairness: Uncovering Biases in How a Toxic Language Classifier Uses Sentiment Information
I. Nejadgholi
Esma Balkir
Kathleen C. Fraser
S. Kiritchenko
13
3
0
19 Oct 2022
Privacy Explanations - A Means to End-User Trust
Wasja Brunotte
Alexander Specht
Larissa Chazette
K. Schneider
22
25
0
18 Oct 2022
Less Learn Shortcut: Analyzing and Mitigating Learning of Spurious Feature-Label Correlation
Yanrui Du
Jing Yang
Yan Chen
Jing Liu
Sendong Zhao
Qiaoqiao She
Huaqin Wu
Haifeng Wang
Bing Qin
20
9
0
25 May 2022
Token-Modification Adversarial Attacks for Natural Language Processing: A Survey
Tom Roth
Yansong Gao
A. Abuadbba
Surya Nepal
Wei Liu
AAML
10
12
0
01 Mar 2021
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
267
1,808
0
14 Dec 2020
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
294
4,187
0
23 Aug 2019
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
225
3,672
0
28 Feb 2017
1