ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.08452
  4. Cited By
GOOD: A Graph Out-of-Distribution Benchmark

GOOD: A Graph Out-of-Distribution Benchmark

16 June 2022
Shurui Gui
Xiner Li
Limei Wang
Shuiwang Ji
    OOD
ArXivPDFHTML

Papers citing "GOOD: A Graph Out-of-Distribution Benchmark"

46 / 96 papers shown
Title
When Graph Neural Network Meets Causality: Opportunities, Methodologies
  and An Outlook
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
24
2
0
19 Dec 2023
GraphMETRO: Mitigating Complex Graph Distribution Shifts via Mixture of
  Aligned Experts
GraphMETRO: Mitigating Complex Graph Distribution Shifts via Mixture of Aligned Experts
Shirley Wu
Kaidi Cao
Bruno Ribeiro
James Y. Zou
J. Leskovec
OOD
9
3
0
07 Dec 2023
Environment-Aware Dynamic Graph Learning for Out-of-Distribution
  Generalization
Environment-Aware Dynamic Graph Learning for Out-of-Distribution Generalization
Haonan Yuan
Qingyun Sun
Xingcheng Fu
Ziwei Zhang
Cheng Ji
Hao Peng
Jianxin Li
OOD
22
15
0
18 Nov 2023
Identifying Semantic Component for Robust Molecular Property Prediction
Identifying Semantic Component for Robust Molecular Property Prediction
Zijian Li
Zunhong Xu
Ruichu Cai
Zhenhui Yang
Yuguang Yan
Zhifeng Hao
Guan-Hong Chen
Kun Zhang
15
9
0
08 Nov 2023
HKTGNN: Hierarchical Knowledge Transferable Graph Neural Network-based
  Supply Chain Risk Assessment
HKTGNN: Hierarchical Knowledge Transferable Graph Neural Network-based Supply Chain Risk Assessment
Zhanting Zhou
Kejun Bi
Yuyanzhen Zhong
Chao Tang
Dongfen Li
Shi Ying
Ruijin Wang
13
0
0
07 Nov 2023
Does Invariant Graph Learning via Environment Augmentation Learn
  Invariance?
Does Invariant Graph Learning via Environment Augmentation Learn Invariance?
Yongqiang Chen
Yatao Bian
Kaiwen Zhou
Binghui Xie
Bo Han
James Cheng
OOD
14
33
0
29 Oct 2023
Towards Combinatorial Generalization for Catalysts: A Kohn-Sham
  Charge-Density Approach
Towards Combinatorial Generalization for Catalysts: A Kohn-Sham Charge-Density Approach
Phillip Pope
David Jacobs
9
3
0
28 Oct 2023
Learning Invariant Molecular Representation in Latent Discrete Space
Learning Invariant Molecular Representation in Latent Discrete Space
Zhuang Xiang
Qiang Zhang
Keyan Ding
Yatao Bian
Xiao Wang
Jingsong Lv
Hongyang Chen
Huajun Chen
OOD
26
16
0
22 Oct 2023
Conformal Drug Property Prediction with Density Estimation under
  Covariate Shift
Conformal Drug Property Prediction with Density Estimation under Covariate Shift
Siddhartha Laghuvarapu
Zhen Lin
Jimeng Sun
12
4
0
18 Oct 2023
ADMEOOD: Out-of-Distribution Benchmark for Drug Property Prediction
ADMEOOD: Out-of-Distribution Benchmark for Drug Property Prediction
Shuoying Wei
Xinlong Wen
Lida Zhu
Songquan Li
Rongbo Zhu
OOD
17
1
0
11 Oct 2023
Lo-Hi: Practical ML Drug Discovery Benchmark
Lo-Hi: Practical ML Drug Discovery Benchmark
Simon Steshin
VLM
13
7
0
10 Oct 2023
Towards out-of-distribution generalizable predictions of chemical
  kinetics properties
Towards out-of-distribution generalizable predictions of chemical kinetics properties
Zihao W. Wang
Yongqiang Chen
Yang Duan
Weijiang Li
Bo Han
James Cheng
Hanghang Tong
OOD
26
6
0
04 Oct 2023
Towards Effective Semantic OOD Detection in Unseen Domains: A Domain
  Generalization Perspective
Towards Effective Semantic OOD Detection in Unseen Domains: A Domain Generalization Perspective
Haoliang Wang
Chen Zhao
Yunhui Guo
Kai Jiang
Feng Chen
20
1
0
18 Sep 2023
Bridged-GNN: Knowledge Bridge Learning for Effective Knowledge Transfer
Bridged-GNN: Knowledge Bridge Learning for Effective Knowledge Transfer
Wendong Bi
Xueqi Cheng
Bingbing Xu
Xiaoqian Sun
Li Xu
Huawei Shen
25
10
0
18 Aug 2023
Graph Relation Aware Continual Learning
Graph Relation Aware Continual Learning
Q. Shen
Weijieying Ren
Wei Qin
CLL
BDL
11
2
0
16 Aug 2023
MARIO: Model Agnostic Recipe for Improving OOD Generalization of Graph
  Contrastive Learning
MARIO: Model Agnostic Recipe for Improving OOD Generalization of Graph Contrastive Learning
Yun Zhu
Haizhou Shi
Zhenshuo Zhang
Siliang Tang
13
7
0
24 Jul 2023
OpenGDA: Graph Domain Adaptation Benchmark for Cross-network Learning
OpenGDA: Graph Domain Adaptation Benchmark for Cross-network Learning
Boshen Shi
Yongqing Wang
Fangda Guo
Jiangli Shao
Huawei Shen
Xueqi Cheng
OOD
AI4CE
23
3
0
21 Jul 2023
Exploring the Potential of Large Language Models (LLMs) in Learning on
  Graphs
Exploring the Potential of Large Language Models (LLMs) in Learning on Graphs
Zhikai Chen
Haitao Mao
Hang Li
Wei Jin
Haifang Wen
...
Shuaiqiang Wang
Dawei Yin
Wenqi Fan
Hui Liu
Jiliang Tang
AI4CE
25
261
0
07 Jul 2023
Bkd-FedGNN: A Benchmark for Classification Backdoor Attacks on Federated
  Graph Neural Network
Bkd-FedGNN: A Benchmark for Classification Backdoor Attacks on Federated Graph Neural Network
F. Liu
Siqi Lai
Yansong NING
Hao Liu
AAML
FedML
14
3
0
17 Jun 2023
Graph Structure and Feature Extrapolation for Out-of-Distribution
  Generalization
Graph Structure and Feature Extrapolation for Out-of-Distribution Generalization
Xiner Li
Shurui Gui
Youzhi Luo
Shuiwang Ji
OODD
OOD
10
11
0
13 Jun 2023
Explaining and Adapting Graph Conditional Shift
Explaining and Adapting Graph Conditional Shift
Qi Zhu
Yizhu Jiao
Natalia Ponomareva
Jiawei Han
Bryan Perozzi
OOD
8
10
0
05 Jun 2023
Structural Re-weighting Improves Graph Domain Adaptation
Structural Re-weighting Improves Graph Domain Adaptation
Shikun Liu
Tianchun Li
Yongbin Feng
Nhan Tran
H. Zhao
Qiu Qiang
Pan Li
OOD
AI4CE
11
30
0
05 Jun 2023
Do-GOOD: Towards Distribution Shift Evaluation for Pre-Trained Visual
  Document Understanding Models
Do-GOOD: Towards Distribution Shift Evaluation for Pre-Trained Visual Document Understanding Models
Jiabang He
Yilang Hu
Lei Wang
Xingdong Xu
Ning Liu
Hui-juan Liu
Hengtao Shen
VLM
OOD
17
2
0
05 Jun 2023
Demystifying Structural Disparity in Graph Neural Networks: Can One Size
  Fit All?
Demystifying Structural Disparity in Graph Neural Networks: Can One Size Fit All?
Haitao Mao
Zhikai Chen
Wei Jin
Haoyu Han
Yao Ma
Tong Zhao
Neil Shah
Jiliang Tang
21
31
0
02 Jun 2023
Joint Learning of Label and Environment Causal Independence for Graph
  Out-of-Distribution Generalization
Joint Learning of Label and Environment Causal Independence for Graph Out-of-Distribution Generalization
Shurui Gui
Meng Liu
Xiner Li
Youzhi Luo
Shuiwang Ji
CML
OOD
8
14
0
01 Jun 2023
Evaluating Robustness and Uncertainty of Graph Models Under Structural
  Distributional Shifts
Evaluating Robustness and Uncertainty of Graph Models Under Structural Distributional Shifts
Gleb Bazhenov
Denis Kuznedelev
A. Malinin
Artem Babenko
Liudmila Prokhorenkova
OOD
6
3
0
27 Feb 2023
Predicting the Silent Majority on Graphs: Knowledge Transferable Graph
  Neural Network
Predicting the Silent Majority on Graphs: Knowledge Transferable Graph Neural Network
Wendong Bi
Bingbing Xu
Xiaoqian Sun
Li Xu
Huawei Shen
Xueqi Cheng
15
16
0
02 Feb 2023
State of the Art and Potentialities of Graph-level Learning
State of the Art and Potentialities of Graph-level Learning
Zhenyu Yang
Ge Zhang
Jia Wu
Jian Yang
Quan.Z Sheng
...
Charu C. Aggarwal
Hao Peng
Wenbin Hu
Edwin R. Hancock
Pietro Lio'
GNN
AI4CE
30
10
0
14 Jan 2023
GLUE-X: Evaluating Natural Language Understanding Models from an
  Out-of-distribution Generalization Perspective
GLUE-X: Evaluating Natural Language Understanding Models from an Out-of-distribution Generalization Perspective
Linyi Yang
Shuibai Zhang
Libo Qin
Yafu Li
Yidong Wang
Hanmeng Liu
Jindong Wang
Xingxu Xie
Yue Zhang
ELM
17
79
0
15 Nov 2022
Unleashing the Power of Graph Data Augmentation on Covariate
  Distribution Shift
Unleashing the Power of Graph Data Augmentation on Covariate Distribution Shift
Yongduo Sui
Qitian Wu
Jiancan Wu
Qing Cui
Longfei Li
An Zhang
Xiang Wang
Xiangnan He
OOD
17
31
0
05 Nov 2022
Empowering Graph Representation Learning with Test-Time Graph
  Transformation
Empowering Graph Representation Learning with Test-Time Graph Transformation
Wei Jin
Tong Zhao
Jiayu Ding
Yozen Liu
Jiliang Tang
Neil Shah
OOD
84
59
0
07 Oct 2022
Towards Better Generalization with Flexible Representation of
  Multi-Module Graph Neural Networks
Towards Better Generalization with Flexible Representation of Multi-Module Graph Neural Networks
Hyungeun Lee
Kijung Yoon
AI4CE
15
2
0
14 Sep 2022
Learning Hierarchical Protein Representations via Complete 3D Graph
  Networks
Learning Hierarchical Protein Representations via Complete 3D Graph Networks
Limei Wang
Haoran Liu
Yi Liu
Jerry Kurtin
Shuiwang Ji
GNN
10
54
0
26 Jul 2022
FlowX: Towards Explainable Graph Neural Networks via Message Flows
FlowX: Towards Explainable Graph Neural Networks via Message Flows
Shurui Gui
Hao Yuan
Jie Wang
Qicheng Lao
Kang Li
Shuiwang Ji
22
11
0
26 Jun 2022
Evaluating Self-Supervised Learning for Molecular Graph Embeddings
Evaluating Self-Supervised Learning for Molecular Graph Embeddings
Hanchen Wang
Jean Kaddour
Shengchao Liu
Jian Tang
Joan Lasenby
Qi Liu
14
20
0
16 Jun 2022
OOD Link Prediction Generalization Capabilities of Message-Passing GNNs
  in Larger Test Graphs
OOD Link Prediction Generalization Capabilities of Message-Passing GNNs in Larger Test Graphs
Yangze Zhou
Gitta Kutyniok
Bruno Ribeiro
OODD
AI4CE
70
37
0
30 May 2022
AUC Maximization in the Era of Big Data and AI: A Survey
AUC Maximization in the Era of Big Data and AI: A Survey
Tianbao Yang
Yiming Ying
8
178
0
28 Mar 2022
Graph Data Augmentation for Graph Machine Learning: A Survey
Graph Data Augmentation for Graph Machine Learning: A Survey
Tong Zhao
Wei Jin
Yozen Liu
Yingheng Wang
Gang Liu
Stephan Günnemann
Neil Shah
Meng-Long Jiang
OOD
12
78
0
17 Feb 2022
Out-Of-Distribution Generalization on Graphs: A Survey
Out-Of-Distribution Generalization on Graphs: A Survey
Haoyang Li
Xin Eric Wang
Ziwei Zhang
Wenwu Zhu
OOD
CML
8
96
0
16 Feb 2022
Discovering Invariant Rationales for Graph Neural Networks
Discovering Invariant Rationales for Graph Neural Networks
Yingmin Wu
Xiang Wang
An Zhang
Xiangnan He
Tat-Seng Chua
OOD
AI4CE
89
222
0
30 Jan 2022
DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for
  AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise
  Annotations
DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise Annotations
Yuanfeng Ji
Lu Zhang
Jiaxiang Wu
Bing Wu
Long-Kai Huang
...
Ping Luo
Shuigeng Zhou
Junzhou Huang
Peilin Zhao
Yatao Bian
OOD
54
73
0
24 Jan 2022
Explainability in Graph Neural Networks: A Taxonomic Survey
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
159
589
0
31 Dec 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
888
0
02 Mar 2020
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
208
1,329
0
12 Feb 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
154
1,748
0
02 Mar 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
Previous
12