Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.10745
Cited By
Derivative-Informed Neural Operator: An Efficient Framework for High-Dimensional Parametric Derivative Learning
21 June 2022
Thomas O'Leary-Roseberry
Peng Chen
Umberto Villa
Omar Ghattas
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Derivative-Informed Neural Operator: An Efficient Framework for High-Dimensional Parametric Derivative Learning"
21 / 21 papers shown
Title
Can Diffusion Models Provide Rigorous Uncertainty Quantification for Bayesian Inverse Problems?
Evan Scope Crafts
Umberto Villa
31
0
0
04 Mar 2025
Verification and Validation for Trustworthy Scientific Machine Learning
John D. Jakeman
Lorena A. Barba
J. Martins
Thomas O'Leary-Roseberry
AI4CE
56
0
0
21 Feb 2025
Coupled Input-Output Dimension Reduction: Application to Goal-oriented Bayesian Experimental Design and Global Sensitivity Analysis
Qiao Chen
Elise Arnaud
Ricardo Baptista
O. Zahm
28
1
0
19 Jun 2024
BiLO: Bilevel Local Operator Learning for PDE inverse problems
Ray Zirui Zhang
Xiaohui Xie
John S. Lowengrub
48
1
0
27 Apr 2024
Neural Operator induced Gaussian Process framework for probabilistic solution of parametric partial differential equations
Sawan Kumar
R. Nayek
Souvik Chakraborty
19
2
0
24 Apr 2024
Geometric Neural Operators (GNPs) for Data-Driven Deep Learning of Non-Euclidean Operators
Blaine Quackenbush
P. Atzberger
AI4CE
17
0
0
16 Apr 2024
PETScML: Second-order solvers for training regression problems in Scientific Machine Learning
Stefano Zampini
Umberto Zerbinati
George Turkyyiah
David E. Keyes
22
4
0
18 Mar 2024
Multifidelity linear regression for scientific machine learning from scarce data
Elizabeth Qian
Dayoung Kang
Vignesh Sella
Anirban Chaudhuri
AI4CE
65
0
0
13 Mar 2024
A Priori Uncertainty Quantification of Reacting Turbulence Closure Models using Bayesian Neural Networks
Graham Pash
M. Hassanaly
S. Yellapantula
AI4CE
16
0
0
28 Feb 2024
Operator Learning: Algorithms and Analysis
Nikola B. Kovachki
S. Lanthaler
Andrew M. Stuart
28
22
0
24 Feb 2024
A Mathematical Guide to Operator Learning
Nicolas Boullé
Alex Townsend
14
35
0
22 Dec 2023
A unified framework for learning with nonlinear model classes from arbitrary linear samples
Ben Adcock
Juan M. Cardenas
N. Dexter
16
3
0
25 Nov 2023
Operator Learning for Continuous Spatial-Temporal Model with Gradient-Based and Derivative-Free Optimization Methods
Chuanqi Chen
Jin-Long Wu
AI4CE
8
0
0
20 Nov 2023
Deep Operator Network Approximation Rates for Lipschitz Operators
Ch. Schwab
A. Stein
Jakob Zech
15
9
0
19 Jul 2023
Solving multiphysics-based inverse problems with learned surrogates and constraints
Ziyi Yin
Rafael Orozco
M. Louboutin
Felix J. Herrmann
AI4CE
61
6
0
18 Jul 2023
CS4ML: A general framework for active learning with arbitrary data based on Christoffel functions
Ben Adcock
Juan M. Cardenas
N. Dexter
11
6
0
01 Jun 2023
Efficient PDE-Constrained optimization under high-dimensional uncertainty using derivative-informed neural operators
Dingcheng Luo
Thomas O'Leary-Roseberry
Peng Chen
Omar Ghattas
AI4CE
11
15
0
31 May 2023
Residual-based error correction for neural operator accelerated infinite-dimensional Bayesian inverse problems
Lianghao Cao
Thomas O'Leary-Roseberry
Prashant K. Jha
J. Oden
Omar Ghattas
6
26
0
06 Oct 2022
Learning High-Dimensional Parametric Maps via Reduced Basis Adaptive Residual Networks
Thomas O'Leary-Roseberry
Xiaosong Du
A. Chaudhuri
J. Martins
Karen E. Willcox
Omar Ghattas
17
22
0
14 Dec 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
197
2,254
0
18 Oct 2020
Projected Stein Variational Gradient Descent
Peng Chen
Omar Ghattas
BDL
45
68
0
09 Feb 2020
1