Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2206.13089
Cited By
v1
v2 (latest)
Agreement-on-the-Line: Predicting the Performance of Neural Networks under Distribution Shift
Neural Information Processing Systems (NeurIPS), 2022
27 June 2022
Christina Baek
Yiding Jiang
Aditi Raghunathan
Zico Kolter
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Agreement-on-the-Line: Predicting the Performance of Neural Networks under Distribution Shift"
43 / 43 papers shown
Title
ODP-Bench: Benchmarking Out-of-Distribution Performance Prediction
Han Yu
Kehan Li
Dongbai Li
Yue He
Xingxuan Zhang
Peng Cui
OODD
298
0
0
31 Oct 2025
Confidence and Dispersity as Signals: Unsupervised Model Evaluation and Ranking
Weijian Deng
Weijie Tu
Ibrahim Radwan
Mohammad Abu Alsheikh
Stephen Gould
Liang Zheng
104
0
0
03 Oct 2025
ALSA: Anchors in Logit Space for Out-of-Distribution Accuracy Estimation
Chenzhi Liu
Mahsa Baktashmotlagh
Yanran Tang
Zi Huang
Ruihong Qiu
80
0
0
27 Aug 2025
The Ramon Llull's Thinking Machine for Automated Ideation
Xinran Zhao
Boyuan Zheng
Chenglei Si
Haofei Yu
Ken Liu
...
Ruochen Li
Tong Chen
Xiang Li
Yiming Zhang
Tongshuang Wu
LLMAG
LRM
192
0
0
26 Aug 2025
Automated Model Evaluation for Object Detection via Prediction Consistency and Reliability
Seungju Yoo
Hyuk Kwon
Joong-Won Hwang
Kibok Lee
148
0
0
16 Aug 2025
Label-free estimation of clinically relevant performance metrics under distribution shifts
Tim Flühmann
Alceu Bissoto
Trung-Dung Hoang
Lisa M. Koch
OOD
69
0
0
30 Jul 2025
Monitoring Risks in Test-Time Adaptation
Mona Schirmer
Metod Jazbec
C. A. Naesseth
Eric T. Nalisnick
TTA
436
2
0
11 Jul 2025
On Continuous Monitoring of Risk Violations under Unknown Shift
Conference on Uncertainty in Artificial Intelligence (UAI), 2025
Alexander Timans
Rajeev Verma
Eric T. Nalisnick
C. A. Naesseth
135
2
0
19 Jun 2025
ODD: Overlap-aware Estimation of Model Performance under Distribution Shift
Conference on Uncertainty in Artificial Intelligence (UAI), 2025
Aayush Mishra
Anqi Liu
132
1
0
17 Jun 2025
Suitability Filter: A Statistical Framework for Classifier Evaluation in Real-World Deployment Settings
Angéline Pouget
Mohammad Yaghini
Stephan Rabanser
Nicolas Papernot
154
0
0
28 May 2025
Performance Estimation in Binary Classification Using Calibrated Confidence
Juhani Kivimäki
Jakub Białek
W. Kuberski
J. Nurminen
233
4
0
08 May 2025
UNEM: UNrolled Generalized EM for Transductive Few-Shot Learning
Computer Vision and Pattern Recognition (CVPR), 2024
Long Zhou
Fereshteh Shakeri
Aymen Sadraoui
Mounir Kaaniche
J. Pesquet
Ismail Ben Ayed
VLM
528
1
0
21 Dec 2024
Toward a Holistic Evaluation of Robustness in CLIP Models
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2024
Weijie Tu
Weijian Deng
Tom Gedeon
VLM
281
7
0
02 Oct 2024
Poor-Supervised Evaluation for SuperLLM via Mutual Consistency
Annual Meeting of the Association for Computational Linguistics (ACL), 2024
Peiwen Yuan
Shaoxiong Feng
Yiwei Li
Xinglin Wang
Boyuan Pan
Heda Wang
Yao Hu
Kan Li
193
1
0
25 Aug 2024
Sharpness-diversity tradeoff: improving flat ensembles with SharpBalance
Haiquan Lu
Xiaotian Liu
Yefan Zhou
Qunli Li
Kurt Keutzer
Michael W. Mahoney
Yujun Yan
Huanrui Yang
Yaoqing Yang
135
2
0
17 Jul 2024
Mission Critical -- Satellite Data is a Distinct Modality in Machine Learning
Esther Rolf
Konstantin Klemmer
Caleb Robinson
Hannah Kerner
176
67
0
02 Feb 2024
AutoFT: Learning an Objective for Robust Fine-Tuning
Caroline Choi
Yoonho Lee
Annie S. Chen
Allan Zhou
Aditi Raghunathan
Chelsea Finn
OOD
269
1
0
18 Jan 2024
Estimating Model Performance Under Covariate Shift Without Labels
Jakub Bialek
W. Kuberski
W. Kuberski
Nikolaos Perrakis
244
5
0
16 Jan 2024
Beyond Top-Class Agreement: Using Divergences to Forecast Performance under Distribution Shift
Mona Schirmer
Dan Zhang
Eric T. Nalisnick
113
0
0
13 Dec 2023
On the Out of Distribution Robustness of Foundation Models in Medical Image Segmentation
D. M. Nguyen
Tan Ngoc Pham
Nghiem Tuong Diep
Nghi Quoc Phan
Quang Pham
...
Ngan Hoang Le
Nhat Ho
Pengtao Xie
Daniel Sonntag
Mathias Niepert
VLM
UQCV
OOD
151
8
0
18 Nov 2023
It's an Alignment, Not a Trade-off: Revisiting Bias and Variance in Deep Models
Lin Chen
Michal Lukasik
Wittawat Jitkrittum
Chong You
Sanjiv Kumar
278
1
0
13 Oct 2023
Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization
Neural Information Processing Systems (NeurIPS), 2023
Mahyar Fazlyab
Taha Entesari
Aniket Roy
Ramalingam Chellappa
AAML
548
19
0
29 Sep 2023
Towards Last-layer Retraining for Group Robustness with Fewer Annotations
Neural Information Processing Systems (NeurIPS), 2023
Tyler LaBonte
Vidya Muthukumar
Abhishek Kumar
337
54
0
15 Sep 2023
Learning Diverse Features in Vision Transformers for Improved Generalization
A. Nicolicioiu
Andrei Liviu Nicolicioiu
B. Alexe
Damien Teney
250
4
0
30 Aug 2023
Distance Matters For Improving Performance Estimation Under Covariate Shift
Mélanie Roschewitz
Ben Glocker
166
1
0
14 Aug 2023
Does Progress On Object Recognition Benchmarks Improve Real-World Generalization?
Megan Richards
Polina Kirichenko
Diane Bouchacourt
Mark Ibrahim
VLM
218
14
0
24 Jul 2023
Confidence-Based Model Selection: When to Take Shortcuts for Subpopulation Shifts
Annie S. Chen
Yoonho Lee
Amrith Rajagopal Setlur
Sergey Levine
Chelsea Finn
OOD
211
5
0
19 Jun 2023
(Almost) Provable Error Bounds Under Distribution Shift via Disagreement Discrepancy
Neural Information Processing Systems (NeurIPS), 2023
Elan Rosenfeld
Saurabh Garg
UQCV
142
12
0
01 Jun 2023
Characterizing Out-of-Distribution Error via Optimal Transport
Neural Information Processing Systems (NeurIPS), 2023
Yuzhe Lu
Yilong Qin
Runtian Zhai
Andrew Shen
Ketong Chen
Zhenlin Wang
Soheil Kolouri
Simon Stepputtis
Joseph Campbell
Katia Sycara
OODD
177
20
0
25 May 2023
DC4L: Distribution Shift Recovery via Data-Driven Control for Deep Learning Models
Conference on Learning for Dynamics & Control (L4DC), 2023
Vivian Lin
Kuk Jin Jang
Souradeep Dutta
Michele Caprio
O. Sokolsky
Insup Lee
OOD
264
8
0
20 Feb 2023
Predicting Out-of-Distribution Error with Confidence Optimal Transport
Yuzhe Lu
Zhenlin Wang
Runtian Zhai
Soheil Kolouri
Joseph Campbell
Katia Sycara
OODD
138
14
0
10 Feb 2023
RLSbench: Domain Adaptation Under Relaxed Label Shift
International Conference on Machine Learning (ICML), 2023
Saurabh Garg
Nick Erickson
James Sharpnack
Alexander J. Smola
Sivaraman Balakrishnan
Zachary Chase Lipton
VLM
314
44
0
06 Feb 2023
Effective Robustness against Natural Distribution Shifts for Models with Different Training Data
Neural Information Processing Systems (NeurIPS), 2023
Zhouxing Shi
Nicholas Carlini
Ananth Balashankar
Ludwig Schmidt
Cho-Jui Hsieh
Alex Beutel
Yao Qin
OOD
199
12
0
02 Feb 2023
Confidence and Dispersity Speak: Characterising Prediction Matrix for Unsupervised Accuracy Estimation
International Conference on Machine Learning (ICML), 2023
Weijian Deng
Yumin Suh
Stephen Gould
Liang Zheng
UQCV
281
20
0
02 Feb 2023
Model Monitoring and Robustness of In-Use Machine Learning Models: Quantifying Data Distribution Shifts Using Population Stability Index
A. Khademi
M. Hopka
Devesh Upadhyay
OOD
183
4
0
01 Feb 2023
Demystifying Disagreement-on-the-Line in High Dimensions
International Conference on Machine Learning (ICML), 2023
Dong-Hwan Lee
Behrad Moniri
Xinmeng Huang
Guang Cheng
Hamed Hassani
219
12
0
31 Jan 2023
Empirical Study on Optimizer Selection for Out-of-Distribution Generalization
Hiroki Naganuma
Kartik Ahuja
S. Takagi
Tetsuya Motokawa
Rio Yokota
Kohta Ishikawa
I. Sato
Ioannis Mitliagkas
OOD
327
8
0
15 Nov 2022
Beyond Bayes-optimality: meta-learning what you know you don't know
Jordi Grau-Moya
Grégoire Delétang
M. Kunesch
Tim Genewein
Elliot Catt
...
Jane X. Wang
Marcus Hutter
Christopher Summerfield
Shane Legg
Pedro A. Ortega
162
2
0
30 Sep 2022
Assaying Out-Of-Distribution Generalization in Transfer Learning
Neural Information Processing Systems (NeurIPS), 2022
F. Wenzel
Andrea Dittadi
Peter V. Gehler
Carl-Johann Simon-Gabriel
Max Horn
...
Chris Russell
Thomas Brox
Bernt Schiele
Bernhard Schölkopf
Francesco Locatello
OOD
OODD
AAML
369
83
0
19 Jul 2022
On the Strong Correlation Between Model Invariance and Generalization
Neural Information Processing Systems (NeurIPS), 2022
Weijian Deng
Stephen Gould
Liang Zheng
OOD
201
24
0
14 Jul 2022
Predicting Out-of-Domain Generalization with Neighborhood Invariance
Nathan Ng
Neha Hulkund
Dong Wang
Marzyeh Ghassemi
OOD
277
6
0
05 Jul 2022
A Note on "Assessing Generalization of SGD via Disagreement"
Andreas Kirsch
Y. Gal
FedML
UQCV
156
18
0
03 Feb 2022
Xception: Deep Learning with Depthwise Separable Convolutions
Computer Vision and Pattern Recognition (CVPR), 2016
François Chollet
MDE
BDL
PINN
2.5K
16,459
0
07 Oct 2016
1