Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.13578
Cited By
Materials Transformers Language Models for Generative Materials Design: a benchmark study
27 June 2022
Nihang Fu
Lai Wei
Yuqi Song
Qinyang Li
Rui Xin
Sadman Sadeed Omee
Rongzhi Dong
Edirisuriya M Dilanga Siriwardane
Jianjun Hu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Materials Transformers Language Models for Generative Materials Design: a benchmark study"
8 / 8 papers shown
Title
Bayesian Optimization of Catalysis With In-Context Learning
M. C. Ramos
Shane S. Michtavy
Marc D. Porosoff
Andrew D. White
BDL
40
30
0
11 Apr 2023
Composition based oxidation state prediction of materials using deep learning
Nihang Fu
Jeffrey Hu
Yingqi Feng
G. Morrison
H. Loye
Jianjun Hu
14
1
0
29 Nov 2022
Keeping it Simple: Language Models can learn Complex Molecular Distributions
Daniel Flam-Shepherd
Kevin Zhu
A. Aspuru‐Guzik
122
142
0
06 Dec 2021
Scalable deeper graph neural networks for high-performance materials property prediction
Sadman Sadeed Omee
Steph-Yves M. Louis
Nihang Fu
Lai Wei
Sourin Dey
Rongzhi Dong
Qinyang Li
Jianjun Hu
68
73
0
25 Sep 2021
Frequency Effects on Syntactic Rule Learning in Transformers
Jason W. Wei
Dan Garrette
Tal Linzen
Ellie Pavlick
80
62
0
14 Sep 2021
The Pile: An 800GB Dataset of Diverse Text for Language Modeling
Leo Gao
Stella Biderman
Sid Black
Laurence Golding
Travis Hoppe
...
Horace He
Anish Thite
Noa Nabeshima
Shawn Presser
Connor Leahy
AIMat
248
1,986
0
31 Dec 2020
Blank Language Models
T. Shen
Victor Quach
Regina Barzilay
Tommi Jaakkola
201
73
0
08 Feb 2020
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
169
633
0
29 Nov 2018
1