ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.05310
  4. Cited By
On the Factory Floor: ML Engineering for Industrial-Scale Ads
  Recommendation Models

On the Factory Floor: ML Engineering for Industrial-Scale Ads Recommendation Models

12 September 2022
Rohan Anil
S. Gadanho
Danya Huang
Nijith Jacob
Zhuoshu Li
Dong Lin
Todd Phillips
Cristina Pop
Kevin Regan
G. Shamir
Rakesh Shivanna
Qiqi Yan
    3DV
ArXivPDFHTML

Papers citing "On the Factory Floor: ML Engineering for Industrial-Scale Ads Recommendation Models"

28 / 28 papers shown
Title
External Large Foundation Model: How to Efficiently Serve Trillions of Parameters for Online Ads Recommendation
External Large Foundation Model: How to Efficiently Serve Trillions of Parameters for Online Ads Recommendation
Mingfu Liang
Xi Liu
Rong Jin
B. Liu
Qiuling Suo
...
Bo Long
Wenlin Chen
Rocky Liu
Santanu Kolay
H. Li
41
1
0
20 Feb 2025
Beyond Self-Consistency: Loss-Balanced Perturbation-Based Regularization Improves Industrial-Scale Ads Ranking
Beyond Self-Consistency: Loss-Balanced Perturbation-Based Regularization Improves Industrial-Scale Ads Ranking
Ilqar Ramazanli
Hamid Eghbalzadeh
Xiaoyi Liu
Yang Wang
Jiaxiang Fu
Kaushik Rangadurai
Sem Park
Bo Long
Xue Feng
44
0
0
05 Feb 2025
360Brew: A Decoder-only Foundation Model for Personalized Ranking and Recommendation
360Brew: A Decoder-only Foundation Model for Personalized Ranking and Recommendation
Hamed Firooz
Maziar Sanjabi
Adrian Englhardt
Aman Gupta
Ben Levine
...
Xiaoling Zhai
Ya Xu
Yu Wang
Yun Dai
Yun Dai
ALM
42
3
0
27 Jan 2025
Data Efficiency for Large Recommendation Models
Data Efficiency for Large Recommendation Models
Kshitij Jain
Jingru Xie
Kevin Regan
Cheng Chen
Jie Han
...
Todd Phillips
Myles Sussman
Matt Troup
Angel Yu
Jia Zhuo
OffRL
21
0
0
08 Oct 2024
A New Perspective on Shampoo's Preconditioner
A New Perspective on Shampoo's Preconditioner
Depen Morwani
Itai Shapira
Nikhil Vyas
Eran Malach
Sham Kakade
Lucas Janson
27
7
0
25 Jun 2024
Unified Low-rank Compression Framework for Click-through Rate Prediction
Unified Low-rank Compression Framework for Click-through Rate Prediction
Hao Yu
Minghao Fu
Jiandong Ding
Yusheng Zhou
Jianxin Wu
22
0
0
28 May 2024
LiRank: Industrial Large Scale Ranking Models at LinkedIn
LiRank: Industrial Large Scale Ranking Models at LinkedIn
Fedor Borisyuk
Mingzhou Zhou
Qingquan Song
Siyu Zhu
B. Tiwana
...
Chen-Chen Jiang
Haichao Wei
Maneesh Varshney
Amol Ghoting
Souvik Ghosh
24
1
0
10 Feb 2024
PriorBoost: An Adaptive Algorithm for Learning from Aggregate Responses
PriorBoost: An Adaptive Algorithm for Learning from Aggregate Responses
Adel Javanmard
Matthew Fahrbach
Vahab Mirrokni
18
3
0
07 Feb 2024
Rankitect: Ranking Architecture Search Battling World-class Engineers at
  Meta Scale
Rankitect: Ranking Architecture Search Battling World-class Engineers at Meta Scale
Wei Wen
Kuang-Hung Liu
Igor Fedorov
Xin Zhang
Hang Yin
...
Fangqiu Han
Jiyan Yang
Yuchen Hao
Liang Xiong
Wen-Yen Chen
23
2
0
14 Nov 2023
What do larger image classifiers memorise?
What do larger image classifiers memorise?
Michal Lukasik
Vaishnavh Nagarajan
A. S. Rawat
A. Menon
Sanjiv Kumar
30
5
0
09 Oct 2023
MAD Max Beyond Single-Node: Enabling Large Machine Learning Model
  Acceleration on Distributed Systems
MAD Max Beyond Single-Node: Enabling Large Machine Learning Model Acceleration on Distributed Systems
Samuel Hsia
Alicia Golden
Bilge Acun
Newsha Ardalani
Zach DeVito
Gu-Yeon Wei
David Brooks
Carole-Jean Wu
MoE
38
9
0
04 Oct 2023
A Distributed Data-Parallel PyTorch Implementation of the Distributed
  Shampoo Optimizer for Training Neural Networks At-Scale
A Distributed Data-Parallel PyTorch Implementation of the Distributed Shampoo Optimizer for Training Neural Networks At-Scale
Hao-Jun Michael Shi
Tsung-Hsien Lee
Shintaro Iwasaki
Jose Gallego-Posada
Zhijing Li
Kaushik Rangadurai
Dheevatsa Mudigere
Michael Rabbat
ODL
17
20
0
12 Sep 2023
Unleash the Power of Context: Enhancing Large-Scale Recommender Systems
  with Context-Based Prediction Models
Unleash the Power of Context: Enhancing Large-Scale Recommender Systems with Context-Based Prediction Models
Jan Hartman
Assaf Klein
Davorin Kopic
Natalia Silberstein
LRM
14
0
0
25 Jul 2023
Rec4Ad: A Free Lunch to Mitigate Sample Selection Bias for Ads CTR
  Prediction in Taobao
Rec4Ad: A Free Lunch to Mitigate Sample Selection Bias for Ads CTR Prediction in Taobao
Jingyue Gao
Shuguang Han
Han Zhu
Siran Yang
Yuning Jiang
Jian Xu
Bo Zheng
33
11
0
06 Jun 2023
Pairwise Ranking Losses of Click-Through Rates Prediction for Welfare
  Maximization in Ad Auctions
Pairwise Ranking Losses of Click-Through Rates Prediction for Welfare Maximization in Ad Auctions
Boxiang Lyu
Zhe Feng
Zachary Robertson
Sanmi Koyejo
15
2
0
01 Jun 2023
KrADagrad: Kronecker Approximation-Domination Gradient Preconditioned
  Stochastic Optimization
KrADagrad: Kronecker Approximation-Domination Gradient Preconditioned Stochastic Optimization
Jonathan Mei
Alexander Moreno
Luke Walters
ODL
19
1
0
30 May 2023
Unified Embedding: Battle-Tested Feature Representations for Web-Scale
  ML Systems
Unified Embedding: Battle-Tested Feature Representations for Web-Scale ML Systems
Benjamin Coleman
Wang-Cheng Kang
Matthew Fahrbach
Ruoxi Wang
Lichan Hong
Ed H. Chi
D. Cheng
25
10
0
20 May 2023
TPU v4: An Optically Reconfigurable Supercomputer for Machine Learning
  with Hardware Support for Embeddings
TPU v4: An Optically Reconfigurable Supercomputer for Machine Learning with Hardware Support for Embeddings
N. Jouppi
George Kurian
Sheng R. Li
Peter C. Ma
R. Nagarajan
...
Brian Towles
C. Young
Xiaoping Zhou
Zongwei Zhou
David A. Patterson
BDL
VLM
36
336
0
04 Apr 2023
Learning Rate Schedules in the Presence of Distribution Shift
Learning Rate Schedules in the Presence of Distribution Shift
Matthew Fahrbach
Adel Javanmard
Vahab Mirrokni
Pratik Worah
19
6
0
27 Mar 2023
Reasonable Scale Machine Learning with Open-Source Metaflow
Reasonable Scale Machine Learning with Open-Source Metaflow
Jacopo Tagliabue
Hugo Bowne-Anderson
Ville Tuulos
Savin Goyal
R. Cledat
David Berg
AIFin
AI4CE
14
6
0
21 Mar 2023
TwERC: High Performance Ensembled Candidate Generation for Ads
  Recommendation at Twitter
TwERC: High Performance Ensembled Candidate Generation for Ads Recommendation at Twitter
Vanessa Cai
Pradeep Prabakar
Manuel Serrano Rebuelta
Lucas Rosen
Federico Monti
...
Tomo Lazovich
J. Raj
Y. Shrinivasan
Hao Li
Thomas Markovich
19
0
0
27 Feb 2023
MP-Rec: Hardware-Software Co-Design to Enable Multi-Path Recommendation
MP-Rec: Hardware-Software Co-Design to Enable Multi-Path Recommendation
Samuel Hsia
Udit Gupta
Bilge Acun
Newsha Ardalani
Pan Zhong
Gu-Yeon Wei
David Brooks
Carole-Jean Wu
33
17
0
21 Feb 2023
Improving Training Stability for Multitask Ranking Models in Recommender
  Systems
Improving Training Stability for Multitask Ranking Models in Recommender Systems
Jiaxi Tang
Yoel Drori
Daryl Chang
M. Sathiamoorthy
Justin Gilmer
Li Wei
Xinyang Yi
Lichan Hong
Ed H. Chi
17
10
0
17 Feb 2023
Sketchy: Memory-efficient Adaptive Regularization with Frequent
  Directions
Sketchy: Memory-efficient Adaptive Regularization with Frequent Directions
Vladimir Feinberg
Xinyi Chen
Y. Jennifer Sun
Rohan Anil
Elad Hazan
21
12
0
07 Feb 2023
FlexShard: Flexible Sharding for Industry-Scale Sequence Recommendation
  Models
FlexShard: Flexible Sharding for Industry-Scale Sequence Recommendation Models
Geet Sethi
Pallab Bhattacharya
Dhruv Choudhary
Carole-Jean Wu
Christos Kozyrakis
11
5
0
08 Jan 2023
RecD: Deduplication for End-to-End Deep Learning Recommendation Model
  Training Infrastructure
RecD: Deduplication for End-to-End Deep Learning Recommendation Model Training Infrastructure
Mark Zhao
Dhruv Choudhary
Devashish Tyagi
A. Somani
Max Kaplan
...
Jongsoo Park
Aarti Basant
Niket Agarwal
Carole-Jean Wu
Christos Kozyrakis
VLM
18
6
0
09 Nov 2022
Anti-Distillation: Improving reproducibility of deep networks
Anti-Distillation: Improving reproducibility of deep networks
G. Shamir
Lorenzo Coviello
34
20
0
19 Oct 2020
Large scale distributed neural network training through online
  distillation
Large scale distributed neural network training through online distillation
Rohan Anil
Gabriel Pereyra
Alexandre Passos
Róbert Ormándi
George E. Dahl
Geoffrey E. Hinton
FedML
267
404
0
09 Apr 2018
1