ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.08860
  4. Cited By
A Survey of Deep Causal Models and Their Industrial Applications

A Survey of Deep Causal Models and Their Industrial Applications

19 September 2022
Zongyu Li
Xiaoning Guo
Siwei Qiang
    CML
    AI4CE
ArXivPDFHTML

Papers citing "A Survey of Deep Causal Models and Their Industrial Applications"

9 / 9 papers shown
Title
Rethinking industrial artificial intelligence: a unified foundation framework
Rethinking industrial artificial intelligence: a unified foundation framework
Jay Lee
Hanqi Su
AI4CE
39
1
0
02 Apr 2025
A Review and Roadmap of Deep Learning Causal Discovery in Different
  Variable Paradigms
A Review and Roadmap of Deep Learning Causal Discovery in Different Variable Paradigms
Hang Chen
Keqing Du
Xinyu Yang
Chenguang Li
CML
29
11
0
14 Sep 2022
Learning Infomax and Domain-Independent Representations for Causal
  Effect Inference with Real-World Data
Learning Infomax and Domain-Independent Representations for Causal Effect Inference with Real-World Data
Zhixuan Chu
S. Rathbun
Sheng R. Li
CML
OOD
37
14
0
22 Feb 2022
Causal Effect Inference for Structured Treatments
Causal Effect Inference for Structured Treatments
Jean Kaddour
Yuchen Zhu
Qi Liu
Matt J. Kusner
Ricardo M. A. Silva
CML
160
49
0
03 Jun 2021
Causal Inference for Time series Analysis: Problems, Methods and
  Evaluation
Causal Inference for Time series Analysis: Problems, Methods and Evaluation
Raha Moraffah
Paras Sheth
Mansooreh Karami
Anchit Bhattacharya
Qianru Wang
Anique Tahir
A. Raglin
Huan Liu
CML
AI4TS
59
103
0
11 Feb 2021
Estimating Average Treatment Effects via Orthogonal Regularization
Estimating Average Treatment Effects via Orthogonal Regularization
Tobias Hatt
Stefan Feuerriegel
CML
148
35
0
21 Jan 2021
Learning Sparse Nonparametric DAGs
Learning Sparse Nonparametric DAGs
Xun Zheng
Chen Dan
Bryon Aragam
Pradeep Ravikumar
Eric P. Xing
CML
101
254
0
29 Sep 2019
Predicting Counterfactuals from Large Historical Data and Small
  Randomized Trials
Predicting Counterfactuals from Large Historical Data and Small Randomized Trials
Nir Rosenfeld
Yishay Mansour
E. Yom-Tov
CML
37
25
0
24 Oct 2016
Learning Representations for Counterfactual Inference
Learning Representations for Counterfactual Inference
Fredrik D. Johansson
Uri Shalit
David Sontag
CML
OOD
BDL
205
713
0
12 May 2016
1