ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.09227
  4. Cited By
TimberTrek: Exploring and Curating Sparse Decision Trees with
  Interactive Visualization

TimberTrek: Exploring and Curating Sparse Decision Trees with Interactive Visualization

19 September 2022
Zijie J. Wang
Chudi Zhong
Rui Xin
Takuya Takagi
Zhi Chen
Duen Horng Chau
Cynthia Rudin
Margo Seltzer
ArXivPDFHTML

Papers citing "TimberTrek: Exploring and Curating Sparse Decision Trees with Interactive Visualization"

7 / 7 papers shown
Title
Amazing Things Come From Having Many Good Models
Amazing Things Come From Having Many Good Models
Cynthia Rudin
Chudi Zhong
Lesia Semenova
Margo Seltzer
Ronald E. Parr
Jiachang Liu
Srikar Katta
Jon Donnelly
Harry Chen
Zachery Boner
26
23
0
05 Jul 2024
Canvil: Designerly Adaptation for LLM-Powered User Experiences
Canvil: Designerly Adaptation for LLM-Powered User Experiences
K. J. Kevin Feng
Q. V. Liao
Ziang Xiao
Jennifer Wortman Vaughan
Amy X. Zhang
David W. McDonald
26
16
0
17 Jan 2024
Exploring the Whole Rashomon Set of Sparse Decision Trees
Exploring the Whole Rashomon Set of Sparse Decision Trees
Rui Xin
Chudi Zhong
Zhi Chen
Takuya Takagi
Margo Seltzer
Cynthia Rudin
33
53
0
16 Sep 2022
Interpretability, Then What? Editing Machine Learning Models to Reflect
  Human Knowledge and Values
Interpretability, Then What? Editing Machine Learning Models to Reflect Human Knowledge and Values
Zijie J. Wang
Alex Kale
Harsha Nori
P. Stella
M. Nunnally
Duen Horng Chau
Mihaela Vorvoreanu
J. W. Vaughan
R. Caruana
KELM
54
27
0
30 Jun 2022
NOVA: A Practical Method for Creating Notebook-Ready Visual Analytics
NOVA: A Practical Method for Creating Notebook-Ready Visual Analytics
Zijie J. Wang
David Munechika
Seongmin Lee
Duen Horng Chau
GNN
20
10
0
08 May 2022
In Pursuit of Interpretable, Fair and Accurate Machine Learning for
  Criminal Recidivism Prediction
In Pursuit of Interpretable, Fair and Accurate Machine Learning for Criminal Recidivism Prediction
Caroline Linjun Wang
Bin Han
Bhrij Patel
Cynthia Rudin
FaML
HAI
57
83
0
08 May 2020
Fair prediction with disparate impact: A study of bias in recidivism
  prediction instruments
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
185
2,082
0
24 Oct 2016
1