ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.11350
  4. Cited By
Oracle Analysis of Representations for Deep Open Set Detection

Oracle Analysis of Representations for Deep Open Set Detection

22 September 2022
Risheek Garrepalli
    AAML
ArXivPDFHTML

Papers citing "Oracle Analysis of Representations for Deep Open Set Detection"

5 / 5 papers shown
Title
MAMo: Leveraging Memory and Attention for Monocular Video Depth Estimation
MAMo: Leveraging Memory and Attention for Monocular Video Depth Estimation
R. Yasarla
H. Cai
Jisoo Jeong
Y. Shi
Risheek Garrepalli
Fatih Porikli
MDE
60
16
0
17 Jan 2025
Open-Set Recognition: a Good Closed-Set Classifier is All You Need?
Open-Set Recognition: a Good Closed-Set Classifier is All You Need?
S. Vaze
Kai Han
Andrea Vedaldi
Andrew Zisserman
BDL
158
401
0
12 Oct 2021
Conditional Gaussian Distribution Learning for Open Set Recognition
Conditional Gaussian Distribution Learning for Open Set Recognition
Xin Sun
Zhen Yang
Chi Zhang
Guohao Peng
K. Ling
BDL
UQCV
133
214
0
19 Mar 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
1