Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.00597
Cited By
Composition of Differential Privacy & Privacy Amplification by Subsampling
2 October 2022
Thomas Steinke
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Composition of Differential Privacy & Privacy Amplification by Subsampling"
37 / 37 papers shown
Title
A Refreshment Stirred, Not Shaken (III): Can Swapping Be Differentially Private?
J. Bailie
Ruobin Gong
X. Meng
22
0
0
21 Apr 2025
Improving Statistical Privacy by Subsampling
Dennis Breutigam
Rüdiger Reischuk
24
0
0
15 Apr 2025
Empirical Privacy Variance
Yuzheng Hu
Fan Wu
Ruicheng Xian
Yuhang Liu
Lydia Zakynthinou
Pritish Kamath
Chiyuan Zhang
David A. Forsyth
64
0
0
16 Mar 2025
PREAMBLE: Private and Efficient Aggregation of Block Sparse Vectors and Applications
Hilal Asi
Vitaly Feldman
Hannah Keller
G. Rothblum
Kunal Talwar
FedML
59
1
0
14 Mar 2025
Learning with Differentially Private (Sliced) Wasserstein Gradients
Clément Lalanne
Jean-Michel Loubes
David Rodríguez-Vítores
FedML
46
0
0
03 Feb 2025
Differential Privacy with Higher Utility by Exploiting Coordinate-wise Disparity: Laplace Mechanism Can Beat Gaussian in High Dimensions
Gokularam Muthukrishnan
Sheetal Kalyani
87
0
0
28 Jan 2025
Aggregating Data for Optimal and Private Learning
Sushant Agarwal
Yukti Makhija
Rishi Saket
A. Raghuveer
FedML
73
0
0
28 Nov 2024
The Last Iterate Advantage: Empirical Auditing and Principled Heuristic Analysis of Differentially Private SGD
Thomas Steinke
Milad Nasr
Arun Ganesh
Borja Balle
Christopher A. Choquette-Choo
Matthew Jagielski
Jamie Hayes
Abhradeep Thakurta
Adam Smith
Andreas Terzis
34
7
0
08 Oct 2024
Adaptively Private Next-Token Prediction of Large Language Models
James Flemings
Meisam Razaviyayn
Murali Annavaram
32
0
0
02 Oct 2024
Better Gaussian Mechanism using Correlated Noise
Christian Janos Lebeda
44
2
0
13 Aug 2024
Federated Cubic Regularized Newton Learning with Sparsification-amplified Differential Privacy
Wei Huo
Changxin Liu
Kemi Ding
Karl H. Johansson
Ling Shi
FedML
37
0
0
08 Aug 2024
Private Collaborative Edge Inference via Over-the-Air Computation
Selim F. Yilmaz
Burak Hasircioglu
Li Qiao
Deniz Gunduz
FedML
55
1
0
30 Jul 2024
Weights Shuffling for Improving DPSGD in Transformer-based Models
Jungang Yang
Zhe Ji
Liyao Xiang
40
0
0
22 Jul 2024
Avoiding Pitfalls for Privacy Accounting of Subsampled Mechanisms under Composition
C. Lebeda
Matthew Regehr
Gautam Kamath
Thomas Steinke
53
9
0
27 May 2024
Differentially Private Next-Token Prediction of Large Language Models
James Flemings
Meisam Razaviyayn
Murali Annavaram
28
6
0
22 Mar 2024
Privacy-Preserving Instructions for Aligning Large Language Models
Da Yu
Peter Kairouz
Sewoong Oh
Zheng Xu
34
17
0
21 Feb 2024
Revisiting Differentially Private Hyper-parameter Tuning
Zihang Xiang
Tianhao Wang
Cheng-Long Wang
Di Wang
34
6
0
20 Feb 2024
Mean Estimation with User-Level Privacy for Spatio-Temporal IoT Datasets
V. A. Rameshwar
Anshoo Tandon
Prajjwal Gupta
Aditya Vikram Singh
Novoneel Chakraborty
Abhay Sharma
18
3
0
29 Jan 2024
Privacy Amplification for Matrix Mechanisms
Christopher A. Choquette-Choo
Arun Ganesh
Thomas Steinke
Abhradeep Thakurta
30
10
0
24 Oct 2023
Differentially Private Data Generation with Missing Data
Shubhankar Mohapatra
Jianqiao Zong
F. Kerschbaum
Xi He
SyDa
17
1
0
17 Oct 2023
A Unifying Privacy Analysis Framework for Unknown Domain Algorithms in Differential Privacy
Ryan Rogers
FedML
25
1
0
17 Sep 2023
DP-Forward: Fine-tuning and Inference on Language Models with Differential Privacy in Forward Pass
Minxin Du
Xiang Yue
Sherman S. M. Chow
Tianhao Wang
Chenyu Huang
Huan Sun
SILM
32
58
0
13 Sep 2023
Personalized Privacy Amplification via Importance Sampling
Dominik Fay
Sebastian Mair
Jens Sjölund
57
0
0
05 Jul 2023
(Amplified) Banded Matrix Factorization: A unified approach to private training
Christopher A. Choquette-Choo
Arun Ganesh
Ryan McKenna
H. B. McMahan
Keith Rush
Abhradeep Thakurta
Zheng Xu
FedML
28
35
0
13 Jun 2023
Selective Pre-training for Private Fine-tuning
Da Yu
Sivakanth Gopi
Janardhan Kulkarni
Zinan Lin
Saurabh Naik
Tomasz Religa
Jian Yin
Huishuai Zhang
35
19
0
23 May 2023
Privacy Auditing with One (1) Training Run
Thomas Steinke
Milad Nasr
Matthew Jagielski
35
77
0
15 May 2023
On Differentially Private Federated Linear Contextual Bandits
Xingyu Zhou
Sayak Ray Chowdhury
FedML
43
15
0
27 Feb 2023
Subsampling Suffices for Adaptive Data Analysis
Guy Blanc
30
8
0
17 Feb 2023
One-shot Empirical Privacy Estimation for Federated Learning
Galen Andrew
Peter Kairouz
Sewoong Oh
Alina Oprea
H. B. McMahan
Vinith M. Suriyakumar
FedML
27
32
0
06 Feb 2023
Practical Differentially Private Hyperparameter Tuning with Subsampling
A. Koskela
Tejas D. Kulkarni
36
14
0
27 Jan 2023
Grafting Laplace and Gaussian distributions: A new noise mechanism for differential privacy
Gokularam Muthukrishnan
Sheetal Kalyani
23
12
0
19 Dec 2022
Lemmas of Differential Privacy
Yiyang Huang
C. Canonne
31
1
0
21 Nov 2022
Privacy Amplification via Shuffled Check-Ins
Seng Pei Liew
Satoshi Hasegawa
Tsubasa Takahashi
FedML
24
0
0
07 Jun 2022
Improved Differential Privacy for SGD via Optimal Private Linear Operators on Adaptive Streams
S. Denisov
H. B. McMahan
J. Rush
Adam D. Smith
Abhradeep Thakurta
FedML
25
60
0
16 Feb 2022
Individual Privacy Accounting via a Renyi Filter
Vitaly Feldman
Tijana Zrnic
59
86
0
25 Aug 2020
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
144
420
0
29 Nov 2018
Prochlo: Strong Privacy for Analytics in the Crowd
Andrea Bittau
Ulfar Erlingsson
Petros Maniatis
Ilya Mironov
A. Raghunathan
David Lie
Mitch Rudominer
Ushasree Kode
J. Tinnés
B. Seefeld
91
278
0
02 Oct 2017
1