ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.04491
  4. Cited By
A survey of Identification and mitigation of Machine Learning
  algorithmic biases in Image Analysis

A survey of Identification and mitigation of Machine Learning algorithmic biases in Image Analysis

10 October 2022
Laurent Risser
Agustin Picard
Lucas Hervier
Jean-Michel Loubes
    FaML
ArXivPDFHTML

Papers citing "A survey of Identification and mitigation of Machine Learning algorithmic biases in Image Analysis"

11 / 11 papers shown
Title
Debiasing Machine Learning Models by Using Weakly Supervised Learning
Debiasing Machine Learning Models by Using Weakly Supervised Learning
Renan D. B. Brotto
Jean-Michel Loubes
Laurent Risser
J. Florens
K. Filho
João Marcos Travassos Romano
19
0
0
23 Feb 2024
Better, Not Just More: Data-Centric Machine Learning for Earth Observation
Better, Not Just More: Data-Centric Machine Learning for Earth Observation
R. Roscher
M. Rußwurm
Caroline Gevaert
Michael C. Kampffmeyer
J. A. dos Santos
...
Ronny Hansch
Stine Hansen
Keiller Nogueira
Jonathan Prexl
D. Tuia
29
10
0
08 Dec 2023
Exploring the Landscape of Machine Unlearning: A Comprehensive Survey
  and Taxonomy
Exploring the Landscape of Machine Unlearning: A Comprehensive Survey and Taxonomy
T. Shaik
Xiaohui Tao
Haoran Xie
Lin Li
Xiaofeng Zhu
Qingyuan Li
MU
27
25
0
10 May 2023
Racial Bias in the Beautyverse
Racial Bias in the Beautyverse
Piera Riccio
Nuria Oliver
11
1
0
28 Sep 2022
Fairness via Explanation Quality: Evaluating Disparities in the Quality
  of Post hoc Explanations
Fairness via Explanation Quality: Evaluating Disparities in the Quality of Post hoc Explanations
Jessica Dai
Sohini Upadhyay
Ulrich Aivodji
Stephen H. Bach
Himabindu Lakkaraju
35
55
0
15 May 2022
Look at the Variance! Efficient Black-box Explanations with Sobol-based
  Sensitivity Analysis
Look at the Variance! Efficient Black-box Explanations with Sobol-based Sensitivity Analysis
Thomas Fel
Rémi Cadène
Mathieu Chalvidal
Matthieu Cord
David Vigouroux
Thomas Serre
MLAU
FAtt
AAML
109
57
0
07 Nov 2021
Skin Deep Unlearning: Artefact and Instrument Debiasing in the Context
  of Melanoma Classification
Skin Deep Unlearning: Artefact and Instrument Debiasing in the Context of Melanoma Classification
P. Bevan
Amir Atapour-Abarghouei
MU
37
18
0
20 Sep 2021
Unsupervised Learning of Debiased Representations with Pseudo-Attributes
Unsupervised Learning of Debiased Representations with Pseudo-Attributes
Seonguk Seo
Joon-Young Lee
Bohyung Han
FaML
57
47
0
06 Aug 2021
Fairness in Machine Learning
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
225
485
0
31 Dec 2020
An Investigation of Why Overparameterization Exacerbates Spurious
  Correlations
An Investigation of Why Overparameterization Exacerbates Spurious Correlations
Shiori Sagawa
Aditi Raghunathan
Pang Wei Koh
Percy Liang
144
368
0
09 May 2020
Fair prediction with disparate impact: A study of bias in recidivism
  prediction instruments
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
185
2,079
0
24 Oct 2016
1