Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.04994
Cited By
Sampling-based inference for large linear models, with application to linearised Laplace
10 October 2022
Javier Antorán
Shreyas Padhy
Riccardo Barbano
Eric T. Nalisnick
David Janz
José Miguel Hernández-Lobato
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sampling-based inference for large linear models, with application to linearised Laplace"
17 / 17 papers shown
Title
Bayes without Underfitting: Fully Correlated Deep Learning Posteriors via Alternating Projections
M. Miani
Hrittik Roy
Søren Hauberg
UQCV
BDL
32
0
0
22 Oct 2024
Reparameterization invariance in approximate Bayesian inference
Hrittik Roy
M. Miani
Carl Henrik Ek
Philipp Hennig
Marvin Pfortner
Lukas Tatzel
Søren Hauberg
BDL
39
8
0
05 Jun 2024
Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes
J. Lin
Shreyas Padhy
Bruno Mlodozeniec
Javier Antorán
José Miguel Hernández-Lobato
22
2
0
28 May 2024
Warm Start Marginal Likelihood Optimisation for Iterative Gaussian Processes
J. Lin
Shreyas Padhy
Bruno Mlodozeniec
José Miguel Hernández-Lobato
17
1
0
28 May 2024
Partially Stochastic Infinitely Deep Bayesian Neural Networks
Sergio Calvo-Ordoñez
Matthieu Meunier
Francesco Piatti
Yuantao Shi
BDL
37
3
0
05 Feb 2024
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Theodore Papamarkou
Maria Skoularidou
Konstantina Palla
Laurence Aitchison
Julyan Arbel
...
David Rügamer
Yee Whye Teh
Max Welling
Andrew Gordon Wilson
Ruqi Zhang
UQCV
BDL
35
27
0
01 Feb 2024
Exploration via linearly perturbed loss minimisation
David Janz
Shuai Liu
Alex Ayoub
Csaba Szepesvári
11
6
0
13 Nov 2023
Stochastic Gradient Descent for Gaussian Processes Done Right
J. Lin
Shreyas Padhy
Javier Antorán
Austin Tripp
Alexander Terenin
Csaba Szepesvári
José Miguel Hernández-Lobato
David Janz
9
7
0
31 Oct 2023
Online Laplace Model Selection Revisited
J. Lin
Javier Antorán
José Miguel Hernández-Lobato
BDL
22
3
0
12 Jul 2023
Sampling from Gaussian Process Posteriors using Stochastic Gradient Descent
J. Lin
Javier Antorán
Shreyas Padhy
David Janz
José Miguel Hernández-Lobato
Alexander Terenin
16
22
0
20 Jun 2023
Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels
Alexander Immer
Tycho F. A. van der Ouderaa
Mark van der Wilk
Gunnar Rätsch
Bernhard Schölkopf
BDL
25
11
0
06 Jun 2023
Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Vincent Fortuin
BDL
UQCV
13
8
0
17 Apr 2023
Variational Linearized Laplace Approximation for Bayesian Deep Learning
Luis A. Ortega
Simón Rodríguez Santana
Daniel Hernández-Lobato
BDL
UQCV
28
4
0
24 Feb 2023
Accelerated Linearized Laplace Approximation for Bayesian Deep Learning
Zhijie Deng
Feng Zhou
Jun Zhu
BDL
42
19
0
23 Oct 2022
Uncertainty Estimation for Computed Tomography with a Linearised Deep Image Prior
Javier Antorán
Riccardo Barbano
Johannes Leuschner
José Miguel Hernández-Lobato
Bangti Jin
UQCV
22
10
0
28 Feb 2022
Anti-Concentrated Confidence Bonuses for Scalable Exploration
Jordan T. Ash
Cyril Zhang
Surbhi Goel
A. Krishnamurthy
Sham Kakade
15
6
0
21 Oct 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,652
0
05 Dec 2016
1