ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.04994
  4. Cited By
Sampling-based inference for large linear models, with application to
  linearised Laplace

Sampling-based inference for large linear models, with application to linearised Laplace

10 October 2022
Javier Antorán
Shreyas Padhy
Riccardo Barbano
Eric T. Nalisnick
David Janz
José Miguel Hernández-Lobato
    BDL
ArXivPDFHTML

Papers citing "Sampling-based inference for large linear models, with application to linearised Laplace"

17 / 17 papers shown
Title
Bayes without Underfitting: Fully Correlated Deep Learning Posteriors
  via Alternating Projections
Bayes without Underfitting: Fully Correlated Deep Learning Posteriors via Alternating Projections
M. Miani
Hrittik Roy
Søren Hauberg
UQCV
BDL
32
0
0
22 Oct 2024
Reparameterization invariance in approximate Bayesian inference
Reparameterization invariance in approximate Bayesian inference
Hrittik Roy
M. Miani
Carl Henrik Ek
Philipp Hennig
Marvin Pfortner
Lukas Tatzel
Søren Hauberg
BDL
42
8
0
05 Jun 2024
Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes
Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes
J. Lin
Shreyas Padhy
Bruno Mlodozeniec
Javier Antorán
José Miguel Hernández-Lobato
22
2
0
28 May 2024
Warm Start Marginal Likelihood Optimisation for Iterative Gaussian
  Processes
Warm Start Marginal Likelihood Optimisation for Iterative Gaussian Processes
J. Lin
Shreyas Padhy
Bruno Mlodozeniec
José Miguel Hernández-Lobato
17
1
0
28 May 2024
Partially Stochastic Infinitely Deep Bayesian Neural Networks
Partially Stochastic Infinitely Deep Bayesian Neural Networks
Sergio Calvo-Ordoñez
Matthieu Meunier
Francesco Piatti
Yuantao Shi
BDL
37
3
0
05 Feb 2024
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Theodore Papamarkou
Maria Skoularidou
Konstantina Palla
Laurence Aitchison
Julyan Arbel
...
David Rügamer
Yee Whye Teh
Max Welling
Andrew Gordon Wilson
Ruqi Zhang
UQCV
BDL
35
27
0
01 Feb 2024
Exploration via linearly perturbed loss minimisation
Exploration via linearly perturbed loss minimisation
David Janz
Shuai Liu
Alex Ayoub
Csaba Szepesvári
11
6
0
13 Nov 2023
Stochastic Gradient Descent for Gaussian Processes Done Right
Stochastic Gradient Descent for Gaussian Processes Done Right
J. Lin
Shreyas Padhy
Javier Antorán
Austin Tripp
Alexander Terenin
Csaba Szepesvári
José Miguel Hernández-Lobato
David Janz
9
7
0
31 Oct 2023
Online Laplace Model Selection Revisited
Online Laplace Model Selection Revisited
J. Lin
Javier Antorán
José Miguel Hernández-Lobato
BDL
22
3
0
12 Jul 2023
Sampling from Gaussian Process Posteriors using Stochastic Gradient
  Descent
Sampling from Gaussian Process Posteriors using Stochastic Gradient Descent
J. Lin
Javier Antorán
Shreyas Padhy
David Janz
José Miguel Hernández-Lobato
Alexander Terenin
16
22
0
20 Jun 2023
Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels
Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels
Alexander Immer
Tycho F. A. van der Ouderaa
Mark van der Wilk
Gunnar Rätsch
Bernhard Schölkopf
BDL
25
11
0
06 Jun 2023
Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization
Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Vincent Fortuin
BDL
UQCV
13
8
0
17 Apr 2023
Variational Linearized Laplace Approximation for Bayesian Deep Learning
Variational Linearized Laplace Approximation for Bayesian Deep Learning
Luis A. Ortega
Simón Rodríguez Santana
Daniel Hernández-Lobato
BDL
UQCV
28
4
0
24 Feb 2023
Accelerated Linearized Laplace Approximation for Bayesian Deep Learning
Accelerated Linearized Laplace Approximation for Bayesian Deep Learning
Zhijie Deng
Feng Zhou
Jun Zhu
BDL
42
19
0
23 Oct 2022
Uncertainty Estimation for Computed Tomography with a Linearised Deep
  Image Prior
Uncertainty Estimation for Computed Tomography with a Linearised Deep Image Prior
Javier Antorán
Riccardo Barbano
Johannes Leuschner
José Miguel Hernández-Lobato
Bangti Jin
UQCV
22
10
0
28 Feb 2022
Anti-Concentrated Confidence Bonuses for Scalable Exploration
Anti-Concentrated Confidence Bonuses for Scalable Exploration
Jordan T. Ash
Cyril Zhang
Surbhi Goel
A. Krishnamurthy
Sham Kakade
15
6
0
21 Oct 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,652
0
05 Dec 2016
1