ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.06441
  4. Cited By
How Much Data Are Augmentations Worth? An Investigation into Scaling
  Laws, Invariance, and Implicit Regularization

How Much Data Are Augmentations Worth? An Investigation into Scaling Laws, Invariance, and Implicit Regularization

12 October 2022
Jonas Geiping
Micah Goldblum
Gowthami Somepalli
Ravid Shwartz-Ziv
Tom Goldstein
A. Wilson
ArXivPDFHTML

Papers citing "How Much Data Are Augmentations Worth? An Investigation into Scaling Laws, Invariance, and Implicit Regularization"

31 / 31 papers shown
Title
Narrowing Class-Wise Robustness Gaps in Adversarial Training
Narrowing Class-Wise Robustness Gaps in Adversarial Training
Fatemeh Amerehi
Patrick Healy
35
0
0
20 Mar 2025
Elliptic Loss Regularization
Ali Hasan
Haoming Yang
Yuting Ng
Vahid Tarokh
58
1
0
04 Mar 2025
(Mis)Fitting: A Survey of Scaling Laws
(Mis)Fitting: A Survey of Scaling Laws
Margaret Li
Sneha Kudugunta
Luke Zettlemoyer
69
2
0
26 Feb 2025
Synthio: Augmenting Small-Scale Audio Classification Datasets with Synthetic Data
Synthio: Augmenting Small-Scale Audio Classification Datasets with Synthetic Data
Sreyan Ghosh
Sonal Kumar
Zhifeng Kong
Rafael Valle
Bryan Catanzaro
Dinesh Manocha
DiffM
39
2
0
02 Oct 2024
Understanding the Role of Invariance in Transfer Learning
Understanding the Role of Invariance in Transfer Learning
Till Speicher
Vedant Nanda
Krishna P. Gummadi
SSL
OOD
31
1
0
05 Jul 2024
ABEX: Data Augmentation for Low-Resource NLU via Expanding Abstract
  Descriptions
ABEX: Data Augmentation for Low-Resource NLU via Expanding Abstract Descriptions
Sreyan Ghosh
Utkarsh Tyagi
Sonal Kumar
C. K. Evuru
S Ramaneswaran
S. Sakshi
Dinesh Manocha
31
5
0
06 Jun 2024
Measuring Style Similarity in Diffusion Models
Measuring Style Similarity in Diffusion Models
Gowthami Somepalli
Anubhav Gupta
Kamal Gupta
Shramay Palta
Micah Goldblum
Jonas Geiping
Abhinav Shrivastava
Tom Goldstein
EGVM
38
35
0
01 Apr 2024
CoDa: Constrained Generation based Data Augmentation for Low-Resource
  NLP
CoDa: Constrained Generation based Data Augmentation for Low-Resource NLP
Chandra Kiran Reddy Evuru
Sreyan Ghosh
Sonal Kumar
S. Ramaneswaran
Utkarsh Tyagi
Dinesh Manocha
32
3
0
30 Mar 2024
Perspectives on the State and Future of Deep Learning - 2023
Perspectives on the State and Future of Deep Learning - 2023
Micah Goldblum
A. Anandkumar
Richard Baraniuk
Tom Goldstein
Kyunghyun Cho
Zachary Chase Lipton
Melanie Mitchell
Preetum Nakkiran
Max Welling
Andrew Gordon Wilson
46
3
0
07 Dec 2023
Understanding the Detrimental Class-level Effects of Data Augmentation
Understanding the Detrimental Class-level Effects of Data Augmentation
Polina Kirichenko
Mark Ibrahim
Randall Balestriero
Diane Bouchacourt
Ramakrishna Vedantam
Hamed Firooz
Andrew Gordon Wilson
27
12
0
07 Dec 2023
Simplifying Neural Network Training Under Class Imbalance
Simplifying Neural Network Training Under Class Imbalance
Ravid Shwartz-Ziv
Micah Goldblum
Yucen Lily Li
C. B. Bruss
Andrew Gordon Wilson
15
14
0
05 Dec 2023
RandMSAugment: A Mixed-Sample Augmentation for Limited-Data Scenarios
RandMSAugment: A Mixed-Sample Augmentation for Limited-Data Scenarios
Swarna Kamlam Ravindran
Carlo Tomasi
19
0
0
25 Nov 2023
Data-Free Knowledge Distillation Using Adversarially Perturbed OpenGL
  Shader Images
Data-Free Knowledge Distillation Using Adversarially Perturbed OpenGL Shader Images
Logan Frank
Jim Davis
20
0
0
20 Oct 2023
Improve Deep Forest with Learnable Layerwise Augmentation Policy
  Schedule
Improve Deep Forest with Learnable Layerwise Augmentation Policy Schedule
Hongyu Zhu
Sichu Liang
Wentao Hu
Fangqi Li
Yali Yuan
Shi-Lin Wang
Guang Cheng
8
2
0
16 Sep 2023
Using and Abusing Equivariance
Using and Abusing Equivariance
Tom Edixhoven
A. Lengyel
J. C. V. Gemert
11
3
0
22 Aug 2023
A Holistic Assessment of the Reliability of Machine Learning Systems
A Holistic Assessment of the Reliability of Machine Learning Systems
Anthony Corso
David Karamadian
Romeo Valentin
Mary Cooper
Mykel J. Kochenderfer
13
6
0
20 Jul 2023
Layer-wise Linear Mode Connectivity
Layer-wise Linear Mode Connectivity
Linara Adilova
Maksym Andriushchenko
Michael Kamp
Asja Fischer
Martin Jaggi
FedML
FAtt
MoMe
26
15
0
13 Jul 2023
ADASSM: Adversarial Data Augmentation in Statistical Shape Models From
  Images
ADASSM: Adversarial Data Augmentation in Statistical Shape Models From Images
Mokshagna Sai Teja Karanam
Tushar Kataria
Krithika S. Iyer
Shireen Elhabian
MedIm
11
3
0
06 Jul 2023
Variance-Covariance Regularization Improves Representation Learning
Variance-Covariance Regularization Improves Representation Learning
Jiachen Zhu
Katrina Evtimova
Yubei Chen
Ravid Shwartz-Ziv
Yann LeCun
SSL
10
7
0
23 Jun 2023
Subspace-Configurable Networks
Subspace-Configurable Networks
Dong Wang
O. Saukh
Xiaoxi He
Lothar Thiele
OOD
22
0
0
22 May 2023
To Compress or Not to Compress- Self-Supervised Learning and Information
  Theory: A Review
To Compress or Not to Compress- Self-Supervised Learning and Information Theory: A Review
Ravid Shwartz-Ziv
Yann LeCun
SSL
6
71
0
19 Apr 2023
Fake it till you make it: Learning transferable representations from
  synthetic ImageNet clones
Fake it till you make it: Learning transferable representations from synthetic ImageNet clones
Mert Bulent Sariyildiz
Alahari Karteek
Diane Larlus
Yannis Kalantidis
DiffM
VLM
15
152
0
16 Dec 2022
Unveiling the Tapestry: the Interplay of Generalization and Forgetting
  in Continual Learning
Unveiling the Tapestry: the Interplay of Generalization and Forgetting in Continual Learning
Zenglin Shi
Jing Jie
Ying Sun
J. Lim
Mengmi Zhang
CLL
29
1
0
21 Nov 2022
tf.data service: A Case for Disaggregating ML Input Data Processing
tf.data service: A Case for Disaggregating ML Input Data Processing
Andrew Audibert
Yangrui Chen
D. Graur
Ana Klimovic
Jiří Šimša
C. A. Thekkath
31
16
0
26 Oct 2022
A Simple Strategy to Provable Invariance via Orbit Mapping
A Simple Strategy to Provable Invariance via Orbit Mapping
Kanchana Vaishnavi Gandikota
Jonas Geiping
Zorah Lähner
Adam Czapliñski
Michael Moeller
AAML
3DPC
13
3
0
24 Sep 2022
Patches Are All You Need?
Patches Are All You Need?
Asher Trockman
J. Zico Kolter
ViT
214
395
0
24 Jan 2022
ResNet strikes back: An improved training procedure in timm
ResNet strikes back: An improved training procedure in timm
Ross Wightman
Hugo Touvron
Hervé Jégou
AI4TS
198
477
0
01 Oct 2021
Stochastic Training is Not Necessary for Generalization
Stochastic Training is Not Necessary for Generalization
Jonas Geiping
Micah Goldblum
Phillip E. Pope
Michael Moeller
Tom Goldstein
81
72
0
29 Sep 2021
Bag of Tricks for Image Classification with Convolutional Neural
  Networks
Bag of Tricks for Image Classification with Convolutional Neural Networks
Tong He
Zhi-Li Zhang
Hang Zhang
Zhongyue Zhang
Junyuan Xie
Mu Li
210
1,391
0
04 Dec 2018
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
279
39,083
0
01 Sep 2014
SMOTE: Synthetic Minority Over-sampling Technique
SMOTE: Synthetic Minority Over-sampling Technique
Nitesh V. Chawla
Kevin W. Bowyer
Lawrence Hall
W. Kegelmeyer
AI4TS
160
25,150
0
09 Jun 2011
1