ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.11841
  4. Cited By
Diffusion Visual Counterfactual Explanations

Diffusion Visual Counterfactual Explanations

21 October 2022
Maximilian Augustin
Valentyn Boreiko
Francesco Croce
Matthias Hein
    DiffM
    BDL
ArXivPDFHTML

Papers citing "Diffusion Visual Counterfactual Explanations"

17 / 17 papers shown
Title
Classifier-to-Bias: Toward Unsupervised Automatic Bias Detection for Visual Classifiers
Classifier-to-Bias: Toward Unsupervised Automatic Bias Detection for Visual Classifiers
Quentin Guimard
Moreno DÍncà
Massimiliano Mancini
Elisa Ricci
SSL
69
0
0
29 Apr 2025
From Visual Explanations to Counterfactual Explanations with Latent Diffusion
From Visual Explanations to Counterfactual Explanations with Latent Diffusion
Tung Luu
Nam Le
Duc Le
Bac Le
DiffM
AAML
FAtt
44
0
0
12 Apr 2025
Disentangling Visual Transformers: Patch-level Interpretability for Image Classification
Disentangling Visual Transformers: Patch-level Interpretability for Image Classification
Guillaume Jeanneret
Loïc Simon
F. Jurie
ViT
41
0
0
24 Feb 2025
Faithful Counterfactual Visual Explanations (FCVE)
Faithful Counterfactual Visual Explanations (FCVE)
Bismillah Khan
Syed Ali Tariq
Tehseen Zia
Muhammad Ahsan
David Windridge
31
0
0
12 Jan 2025
GIFT: A Framework for Global Interpretable Faithful Textual Explanations of Vision Classifiers
GIFT: A Framework for Global Interpretable Faithful Textual Explanations of Vision Classifiers
Éloi Zablocki
Valentin Gerard
Amaia Cardiel
Eric Gaussier
Matthieu Cord
Eduardo Valle
66
0
0
23 Nov 2024
Robust image representations with counterfactual contrastive learning
Robust image representations with counterfactual contrastive learning
Mélanie Roschewitz
Fabio De Sousa Ribeiro
Tian Xia
G. Khara
Ben Glocker
OOD
MedIm
33
2
0
16 Sep 2024
Enhancing Counterfactual Image Generation Using Mahalanobis Distance
  with Distribution Preferences in Feature Space
Enhancing Counterfactual Image Generation Using Mahalanobis Distance with Distribution Preferences in Feature Space
Yukai Zhang
Ao Xu
Zihao Li
Tieru Wu
30
1
0
31 May 2024
Causal Diffusion Autoencoders: Toward Counterfactual Generation via
  Diffusion Probabilistic Models
Causal Diffusion Autoencoders: Toward Counterfactual Generation via Diffusion Probabilistic Models
Aneesh Komanduri
Chengli Zhao
Feng Chen
Xintao Wu
CML
DiffM
25
4
0
27 Apr 2024
Global Counterfactual Directions
Global Counterfactual Directions
Bartlomiej Sobieski
P. Biecek
DiffM
56
4
0
18 Apr 2024
Generating Counterfactual Trajectories with Latent Diffusion Models for Concept Discovery
Generating Counterfactual Trajectories with Latent Diffusion Models for Concept Discovery
Payal Varshney
Adriano Lucieri
Christoph Balada
Andreas Dengel
Sheraz Ahmed
MedIm
DiffM
29
3
0
16 Apr 2024
Natural Example-Based Explainability: a Survey
Natural Example-Based Explainability: a Survey
Antonin Poché
Lucas Hervier
M. Bakkay
XAI
11
11
0
05 Sep 2023
DreaMR: Diffusion-driven Counterfactual Explanation for Functional MRI
DreaMR: Diffusion-driven Counterfactual Explanation for Functional MRI
H. Bedel
Tolga Çukur
DiffM
MedIm
13
24
0
18 Jul 2023
Discriminative Class Tokens for Text-to-Image Diffusion Models
Discriminative Class Tokens for Text-to-Image Diffusion Models
Idan Schwartz
Vésteinn Snaebjarnarson
Hila Chefer
Ryan Cotterell
Serge J. Belongie
Lior Wolf
Sagie Benaim
11
9
0
30 Mar 2023
Emerging Synergies in Causality and Deep Generative Models: A Survey
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Biwei Huang
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Kun Zhang
AI4CE
33
11
0
29 Jan 2023
Are Transformers More Robust Than CNNs?
Are Transformers More Robust Than CNNs?
Yutong Bai
Jieru Mei
Alan Yuille
Cihang Xie
ViT
AAML
167
256
0
10 Nov 2021
Using StyleGAN for Visual Interpretability of Deep Learning Models on
  Medical Images
Using StyleGAN for Visual Interpretability of Deep Learning Models on Medical Images
K. Schutte
O. Moindrot
P. Hérent
Jean-Baptiste Schiratti
S. Jégou
FAtt
MedIm
26
53
0
19 Jan 2021
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
279
39,083
0
01 Sep 2014
1