Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.14199
Cited By
Same Pre-training Loss, Better Downstream: Implicit Bias Matters for Language Models
25 October 2022
Hong Liu
Sang Michael Xie
Zhiyuan Li
Tengyu Ma
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Same Pre-training Loss, Better Downstream: Implicit Bias Matters for Language Models"
18 / 18 papers shown
Title
Revisiting Transformers through the Lens of Low Entropy and Dynamic Sparsity
Ruifeng Ren
Yong Liu
39
0
0
26 Apr 2025
Reasoning Bias of Next Token Prediction Training
Pengxiao Lin
Zhongwang Zhang
Zhi-Qin John Xu
LRM
80
1
0
21 Feb 2025
Implicit Geometry of Next-token Prediction: From Language Sparsity Patterns to Model Representations
Yize Zhao
Tina Behnia
V. Vakilian
Christos Thrampoulidis
55
7
0
20 Feb 2025
SLoPe: Double-Pruned Sparse Plus Lazy Low-Rank Adapter Pretraining of LLMs
Mohammad Mozaffari
Amir Yazdanbakhsh
Zhao Zhang
M. Dehnavi
65
5
0
28 Jan 2025
Understanding Emergent Abilities of Language Models from the Loss Perspective
Zhengxiao Du
Aohan Zeng
Yuxiao Dong
Jie Tang
UQCV
LRM
55
46
0
23 Mar 2024
Improving Language Plasticity via Pretraining with Active Forgetting
Yihong Chen
Kelly Marchisio
Roberta Raileanu
David Ifeoluwa Adelani
Pontus Stenetorp
Sebastian Riedel
Mikel Artetx
KELM
AI4CE
CLL
17
23
0
03 Jul 2023
How to escape sharp minima with random perturbations
Kwangjun Ahn
Ali Jadbabaie
S. Sra
ODL
22
6
0
25 May 2023
Flatness-Aware Prompt Selection Improves Accuracy and Sample Efficiency
Lingfeng Shen
Weiting Tan
Boyuan Zheng
Daniel Khashabi
VLM
22
6
0
18 May 2023
Understanding Gradient Descent on Edge of Stability in Deep Learning
Sanjeev Arora
Zhiyuan Li
A. Panigrahi
MLT
72
88
0
19 May 2022
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
Jason W. Wei
Xuezhi Wang
Dale Schuurmans
Maarten Bosma
Brian Ichter
F. Xia
Ed H. Chi
Quoc Le
Denny Zhou
LM&Ro
LRM
AI4CE
ReLM
315
8,261
0
28 Jan 2022
Sharpness-Aware Minimization Improves Language Model Generalization
Dara Bahri
H. Mobahi
Yi Tay
119
82
0
16 Oct 2021
What Happens after SGD Reaches Zero Loss? --A Mathematical Framework
Zhiyuan Li
Tianhao Wang
Sanjeev Arora
MLT
83
98
0
13 Oct 2021
Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers
Yi Tay
Mostafa Dehghani
J. Rao
W. Fedus
Samira Abnar
Hyung Won Chung
Sharan Narang
Dani Yogatama
Ashish Vaswani
Donald Metzler
183
89
0
22 Sep 2021
MLP-Mixer: An all-MLP Architecture for Vision
Ilya O. Tolstikhin
N. Houlsby
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
...
Andreas Steiner
Daniel Keysers
Jakob Uszkoreit
Mario Lucic
Alexey Dosovitskiy
239
2,554
0
04 May 2021
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
220
4,424
0
23 Jan 2020
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
294
6,927
0
20 Apr 2018
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
273
2,878
0
15 Sep 2016
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights
Weijie Su
Stephen P. Boyd
Emmanuel J. Candes
97
1,150
0
04 Mar 2015
1