Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.15651
Cited By
Learning Single-Index Models with Shallow Neural Networks
27 October 2022
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Single-Index Models with Shallow Neural Networks"
17 / 17 papers shown
Title
Statistically guided deep learning
Michael Kohler
A. Krzyżak
ODL
BDL
55
0
0
11 Apr 2025
Sloth: scaling laws for LLM skills to predict multi-benchmark performance across families
Felipe Maia Polo
S. Kamath S
Leshem Choshen
Yuekai Sun
Mikhail Yurochkin
72
5
0
09 Dec 2024
Learning Gaussian Multi-Index Models with Gradient Flow: Time Complexity and Directional Convergence
Berfin Simsek
Amire Bendjeddou
Daniel Hsu
30
0
0
13 Nov 2024
How Neural Networks Learn the Support is an Implicit Regularization Effect of SGD
Pierfrancesco Beneventano
Andrea Pinto
Tomaso A. Poggio
MLT
19
1
0
17 Jun 2024
Repetita Iuvant: Data Repetition Allows SGD to Learn High-Dimensional Multi-Index Functions
Luca Arnaboldi
Yatin Dandi
Florent Krzakala
Luca Pesce
Ludovic Stephan
49
11
0
24 May 2024
Gradient-Based Feature Learning under Structured Data
Alireza Mousavi-Hosseini
Denny Wu
Taiji Suzuki
Murat A. Erdogdu
MLT
8
18
0
07 Sep 2023
Pareto Frontiers in Neural Feature Learning: Data, Compute, Width, and Luck
Benjamin L. Edelman
Surbhi Goel
Sham Kakade
Eran Malach
Cyril Zhang
25
7
0
07 Sep 2023
On Single Index Models beyond Gaussian Data
Joan Bruna
Loucas Pillaud-Vivien
Aaron Zweig
8
10
0
28 Jul 2023
Unraveling Projection Heads in Contrastive Learning: Insights from Expansion and Shrinkage
Yu Gui
Cong Ma
Yiqiao Zhong
4
6
0
06 Jun 2023
ReLU Neural Networks with Linear Layers are Biased Towards Single- and Multi-Index Models
Suzanna Parkinson
Greg Ongie
Rebecca Willett
36
6
0
24 May 2023
Smoothing the Landscape Boosts the Signal for SGD: Optimal Sample Complexity for Learning Single Index Models
Alexandru Damian
Eshaan Nichani
Rong Ge
Jason D. Lee
MLT
19
33
0
18 May 2023
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Eshaan Nichani
Alexandru Damian
Jason D. Lee
MLT
29
13
0
11 May 2023
Learning time-scales in two-layers neural networks
Raphael Berthier
Andrea Montanari
Kangjie Zhou
10
33
0
28 Feb 2023
Learning Lipschitz Functions by GD-trained Shallow Overparameterized ReLU Neural Networks
Ilja Kuzborskij
Csaba Szepesvári
13
4
0
28 Dec 2022
Neural Networks Efficiently Learn Low-Dimensional Representations with SGD
Alireza Mousavi-Hosseini
Sejun Park
M. Girotti
Ioannis Mitliagkas
Murat A. Erdogdu
MLT
307
48
0
29 Sep 2022
Optimization-Based Separations for Neural Networks
Itay Safran
Jason D. Lee
54
14
0
04 Dec 2021
A Local Convergence Theory for Mildly Over-Parameterized Two-Layer Neural Network
Mo Zhou
Rong Ge
Chi Jin
59
44
0
04 Feb 2021
1