ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.01851
  4. Cited By
Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum
  Minimization

Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum Minimization

3 November 2022
Ali Kavis
Stratis Skoulakis
Kimon Antonakopoulos
L. Dadi
V. Cevher
ArXivPDFHTML

Papers citing "Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum Minimization"

13 / 13 papers shown
Title
How Effective Can Dropout Be in Multiple Instance Learning ?
How Effective Can Dropout Be in Multiple Instance Learning ?
Wenhui Zhu
Peijie Qiu
Xiwen Chen
Zhangsihao Yang
Aristeidis Sotiras
Abolfazl Razi
Y. Wang
32
0
0
21 Apr 2025
Adaptive Accelerated Proximal Gradient Methods with Variance Reduction for Composite Nonconvex Finite-Sum Minimization
Adaptive Accelerated Proximal Gradient Methods with Variance Reduction for Composite Nonconvex Finite-Sum Minimization
Ganzhao Yuan
38
0
0
28 Feb 2025
Faster Adaptive Decentralized Learning Algorithms
Faster Adaptive Decentralized Learning Algorithms
Feihu Huang
Jianyu Zhao
35
0
0
19 Aug 2024
Efficient Continual Finite-Sum Minimization
Efficient Continual Finite-Sum Minimization
Ioannis Mavrothalassitis
Stratis Skoulakis
L. Dadi
V. Cevher
24
0
0
07 Jun 2024
Adaptive Variance Reduction for Stochastic Optimization under Weaker
  Assumptions
Adaptive Variance Reduction for Stochastic Optimization under Weaker Assumptions
Wei Jiang
Sifan Yang
Yibo Wang
Lijun Zhang
28
1
0
04 Jun 2024
Efficient Sign-Based Optimization: Accelerating Convergence via Variance
  Reduction
Efficient Sign-Based Optimization: Accelerating Convergence via Variance Reduction
Wei Jiang
Sifan Yang
Wenhao Yang
Lijun Zhang
21
3
0
01 Jun 2024
Streamlining in the Riemannian Realm: Efficient Riemannian Optimization
  with Loopless Variance Reduction
Streamlining in the Riemannian Realm: Efficient Riemannian Optimization with Loopless Variance Reduction
Yury Demidovich
Grigory Malinovsky
Peter Richtárik
50
2
0
11 Mar 2024
A Coefficient Makes SVRG Effective
A Coefficient Makes SVRG Effective
Yida Yin
Zhiqiu Xu
Zhiyuan Li
Trevor Darrell
Zhuang Liu
23
1
0
09 Nov 2023
Adaptive SGD with Polyak stepsize and Line-search: Robust Convergence
  and Variance Reduction
Adaptive SGD with Polyak stepsize and Line-search: Robust Convergence and Variance Reduction
Xiao-Yan Jiang
Sebastian U. Stich
22
18
0
11 Aug 2023
Two Sides of One Coin: the Limits of Untuned SGD and the Power of
  Adaptive Methods
Two Sides of One Coin: the Limits of Untuned SGD and the Power of Adaptive Methods
Junchi Yang
Xiang Li
Ilyas Fatkhullin
Niao He
34
15
0
21 May 2023
Dropout Reduces Underfitting
Dropout Reduces Underfitting
Zhuang Liu
Zhi-Qin John Xu
Joseph Jin
Zhiqiang Shen
Trevor Darrell
32
36
0
02 Mar 2023
Variance-reduced Clipping for Non-convex Optimization
Variance-reduced Clipping for Non-convex Optimization
Amirhossein Reisizadeh
Haochuan Li
Subhro Das
Ali Jadbabaie
18
25
0
02 Mar 2023
Katyusha X: Practical Momentum Method for Stochastic Sum-of-Nonconvex
  Optimization
Katyusha X: Practical Momentum Method for Stochastic Sum-of-Nonconvex Optimization
Zeyuan Allen-Zhu
ODL
42
52
0
12 Feb 2018
1