ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.03402
  4. Cited By
PeSOTIF: a Challenging Visual Dataset for Perception SOTIF Problems in
  Long-tail Traffic Scenarios

PeSOTIF: a Challenging Visual Dataset for Perception SOTIF Problems in Long-tail Traffic Scenarios

7 November 2022
Liangzu Peng
Jun Li
Wenbo Shao
Hong Wang
ArXivPDFHTML

Papers citing "PeSOTIF: a Challenging Visual Dataset for Perception SOTIF Problems in Long-tail Traffic Scenarios"

7 / 7 papers shown
Title
DriveSOTIF: Advancing Perception SOTIF Through Multimodal Large Language Models
DriveSOTIF: Advancing Perception SOTIF Through Multimodal Large Language Models
Shucheng Huang
Freda Shi
Chen Sun
Jiaming Zhong
Minghao Ning
Yufeng Yang
Yukun Lu
Hong Wang
A. Khajepour
19
0
0
11 May 2025
Simulation-Based Performance Evaluation of 3D Object Detection Methods with Deep Learning for a LiDAR Point Cloud Dataset in a SOTIF-related Use Case
Milin Patel
Rolf Jung
3DPC
63
2
0
05 Mar 2025
A Systematic Literature Review on Safety of the Intended Functionality for Automated Driving Systems
A Systematic Literature Review on Safety of the Intended Functionality for Automated Driving Systems
Milin Patel
Rolf Jung
M. Khatun
67
0
0
04 Mar 2025
SOTIF Entropy: Online SOTIF Risk Quantification and Mitigation for
  Autonomous Driving
SOTIF Entropy: Online SOTIF Risk Quantification and Mitigation for Autonomous Driving
Liang Peng
Boqi Li
Wen-Hui Yu
Kailiang Yang
Wenbo Shao
Hong Wang
AAML
17
22
0
08 Nov 2022
RADIATE: A Radar Dataset for Automotive Perception in Bad Weather
RADIATE: A Radar Dataset for Automotive Perception in Bad Weather
Marcel Sheeny
Emanuele De Pellegrin
S. Mukherjee
Alireza Ahrabian
Sen Wang
Andrew M. Wallace
56
197
0
18 Oct 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
1