Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.08095
Cited By
Will Large-scale Generative Models Corrupt Future Datasets?
15 November 2022
Ryuichiro Hataya
Han Bao
Hiromi Arai
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Will Large-scale Generative Models Corrupt Future Datasets?"
10 / 10 papers shown
Title
Recursive Training Loops in LLMs: How training data properties modulate distribution shift in generated data?
Grgur Kovač
Jérémy Perez
Rémy Portelas
Peter Ford Dominey
Pierre-Yves Oudeyer
33
0
0
04 Apr 2025
The Best Instruction-Tuning Data are Those That Fit
Dylan Zhang
Qirun Dai
Hao Peng
ALM
115
3
0
06 Feb 2025
Self-Improving Transformers Overcome Easy-to-Hard and Length Generalization Challenges
Nayoung Lee
Ziyang Cai
Avi Schwarzschild
Kangwook Lee
Dimitris Papailiopoulos
ReLM
VLM
LRM
AI4CE
73
4
0
03 Feb 2025
Collapse or Thrive? Perils and Promises of Synthetic Data in a Self-Generating World
Joshua Kazdan
Rylan Schaeffer
Apratim Dey
Matthias Gerstgrasser
Rafael Rafailov
D. Donoho
Sanmi Koyejo
45
11
0
22 Oct 2024
Nepotistically Trained Generative-AI Models Collapse
Matyáš Boháček
Hany Farid
46
17
0
20 Nov 2023
LAVIS: A Library for Language-Vision Intelligence
Dongxu Li
Junnan Li
Hung Le
Guangsen Wang
Silvio Savarese
S. Hoi
VLM
113
51
0
15 Sep 2022
BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
Junnan Li
Dongxu Li
Caiming Xiong
S. Hoi
MLLM
BDL
VLM
CLIP
390
4,124
0
28 Jan 2022
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
260
7,434
0
11 Nov 2021
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
262
10,344
0
12 Dec 2018
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
282
39,190
0
01 Sep 2014
1