Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.13609
Cited By
PAC-Bayes Compression Bounds So Tight That They Can Explain Generalization
24 November 2022
Sanae Lotfi
Marc Finzi
Sanyam Kapoor
Andres Potapczynski
Micah Goldblum
A. Wilson
BDL
MLT
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"PAC-Bayes Compression Bounds So Tight That They Can Explain Generalization"
41 / 41 papers shown
Title
Compute-Optimal LLMs Provably Generalize Better With Scale
Marc Finzi
Sanyam Kapoor
Diego Granziol
Anming Gu
Christopher De Sa
J. Zico Kolter
Andrew Gordon Wilson
28
0
0
21 Apr 2025
How good is PAC-Bayes at explaining generalisation?
Antoine Picard-Weibel
Eugenio Clerico
Roman Moscoviz
Benjamin Guedj
59
0
0
11 Mar 2025
Non-vacuous Generalization Bounds for Deep Neural Networks without any modification to the trained models
Khoat Than
Dat Phan
BDL
AAML
VLM
60
0
0
10 Mar 2025
Deep Learning is Not So Mysterious or Different
Andrew Gordon Wilson
36
2
0
03 Mar 2025
`Generalization is hallucination' through the lens of tensor completions
Liang Ze Wong
VLM
58
0
0
24 Feb 2025
On the Generalization of Preference Learning with DPO
Shawn Im
Yixuan Li
44
1
0
06 Aug 2024
Unlocking Tokens as Data Points for Generalization Bounds on Larger Language Models
Sanae Lotfi
Yilun Kuang
Brandon Amos
Micah Goldblum
Marc Finzi
Andrew Gordon Wilson
24
7
0
25 Jul 2024
Just How Flexible are Neural Networks in Practice?
Ravid Shwartz-Ziv
Micah Goldblum
Arpit Bansal
C. B. Bruss
Yann LeCun
Andrew Gordon Wilson
35
4
0
17 Jun 2024
Slicing Mutual Information Generalization Bounds for Neural Networks
Kimia Nadjahi
Kristjan Greenewald
Rickard Brüel-Gabrielsson
Justin Solomon
41
3
0
06 Jun 2024
Position: Understanding LLMs Requires More Than Statistical Generalization
Patrik Reizinger
Szilvia Ujváry
Anna Mészáros
A. Kerekes
Wieland Brendel
Ferenc Huszár
36
12
0
03 May 2024
How Uniform Random Weights Induce Non-uniform Bias: Typical Interpolating Neural Networks Generalize with Narrow Teachers
G. Buzaglo
I. Harel
Mor Shpigel Nacson
Alon Brutzkus
Nathan Srebro
Daniel Soudry
54
3
0
09 Feb 2024
Multitask methods for predicting molecular properties from heterogeneous data
Katharine Fisher
Michael Herbst
Youssef Marzouk
15
6
0
31 Jan 2024
Non-Vacuous Generalization Bounds for Large Language Models
Sanae Lotfi
Marc Finzi
Yilun Kuang
Tim G. J. Rudner
Micah Goldblum
Andrew Gordon Wilson
21
20
0
28 Dec 2023
A note on regularised NTK dynamics with an application to PAC-Bayesian training
Eugenio Clerico
Benjamin Guedj
33
0
0
20 Dec 2023
Perspectives on the State and Future of Deep Learning - 2023
Micah Goldblum
A. Anandkumar
Richard Baraniuk
Tom Goldstein
Kyunghyun Cho
Zachary Chase Lipton
Melanie Mitchell
Preetum Nakkiran
Max Welling
Andrew Gordon Wilson
53
4
0
07 Dec 2023
PAC-Bayes Generalization Certificates for Learned Inductive Conformal Prediction
Apoorva Sharma
Sushant Veer
Asher Hancock
Heng Yang
Marco Pavone
Anirudha Majumdar
41
8
0
07 Dec 2023
Simplifying Neural Network Training Under Class Imbalance
Ravid Shwartz-Ziv
Micah Goldblum
Yucen Lily Li
C. B. Bruss
Andrew Gordon Wilson
26
14
0
05 Dec 2023
A PAC-Bayesian Perspective on the Interpolating Information Criterion
Liam Hodgkinson
Christopher van der Heide
Roberto Salomone
Fred Roosta
Michael W. Mahoney
27
1
0
13 Nov 2023
Information-Theoretic Generalization Bounds for Transductive Learning and its Applications
Huayi Tang
Yong Liu
55
1
0
08 Nov 2023
Estimating optimal PAC-Bayes bounds with Hamiltonian Monte Carlo
Szilvia Ujváry
Gergely Flamich
Vincent Fortuin
José Miguel Hernández Lobato
10
0
0
30 Oct 2023
Comparing Comparators in Generalization Bounds
Fredrik Hellström
Benjamin Guedj
23
4
0
16 Oct 2023
Understanding prompt engineering may not require rethinking generalization
Victor Akinwande
Yiding Jiang
Dylan Sam
J. Zico Kolter
VLM
VPVLM
115
7
0
06 Oct 2023
The fine print on tempered posteriors
Konstantinos Pitas
Julyan Arbel
25
1
0
11 Sep 2023
Input margins can predict generalization too
Coenraad Mouton
Marthinus W. Theunissen
Marelie Hattingh Davel
AAML
UQCV
AI4CE
16
3
0
29 Aug 2023
More PAC-Bayes bounds: From bounded losses, to losses with general tail behaviors, to anytime validity
Borja Rodríguez Gálvez
Ragnar Thobaben
Mikael Skoglund
26
9
0
21 Jun 2023
Lessons from Generalization Error Analysis of Federated Learning: You May Communicate Less Often!
Milad Sefidgaran
Romain Chor
A. Zaidi
Yijun Wan
FedML
21
6
0
09 Jun 2023
Learning via Wasserstein-Based High Probability Generalisation Bounds
Paul Viallard
Maxime Haddouche
Umut Simsekli
Benjamin Guedj
30
12
0
07 Jun 2023
Understanding Augmentation-based Self-Supervised Representation Learning via RKHS Approximation and Regression
Runtian Zhai
Bing Liu
Andrej Risteski
Zico Kolter
Pradeep Ravikumar
SSL
28
9
0
01 Jun 2023
How Does Information Bottleneck Help Deep Learning?
Kenji Kawaguchi
Zhun Deng
Xu Ji
Jiaoyang Huang
38
53
0
30 May 2023
Fundamental Tradeoffs in Learning with Prior Information
Anirudha Majumdar
13
0
0
26 Apr 2023
The No Free Lunch Theorem, Kolmogorov Complexity, and the Role of Inductive Biases in Machine Learning
Micah Goldblum
Marc Finzi
K. Rowan
A. Wilson
UQCV
FedML
13
37
0
11 Apr 2023
Mathematical Challenges in Deep Learning
V. Nia
Guojun Zhang
I. Kobyzev
Michael R. Metel
Xinlin Li
...
S. Hemati
M. Asgharian
Linglong Kong
Wulong Liu
Boxing Chen
AI4CE
VLM
35
1
0
24 Mar 2023
Transformed Low-Rank Parameterization Can Help Robust Generalization for Tensor Neural Networks
Andong Wang
C. Li
Mingyuan Bai
Zhong Jin
Guoxu Zhou
Qianchuan Zhao
OOD
AAML
13
5
0
01 Mar 2023
Norm-based Generalization Bounds for Compositionally Sparse Neural Networks
Tomer Galanti
Mengjia Xu
Liane Galanti
T. Poggio
14
9
0
28 Jan 2023
Two Facets of SDE Under an Information-Theoretic Lens: Generalization of SGD via Training Trajectories and via Terminal States
Ziqiao Wang
Yongyi Mao
8
10
0
19 Nov 2022
Trajectory-dependent Generalization Bounds for Deep Neural Networks via Fractional Brownian Motion
Chengli Tan
Jiang Zhang
Junmin Liu
33
1
0
09 Jun 2022
Predicting the generalization gap in neural networks using topological data analysis
Rubén Ballester
Xavier Arnal Clemente
Carles Casacuberta
Meysam Madadi
C. Corneanu
Sergio Escalera
33
2
0
23 Mar 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCV
BDL
52
56
0
23 Feb 2022
Stochastic Training is Not Necessary for Generalization
Jonas Geiping
Micah Goldblum
Phillip E. Pope
Michael Moeller
Tom Goldstein
81
72
0
29 Sep 2021
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
273
2,886
0
15 Sep 2016
Pac-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning
O. Catoni
137
453
0
03 Dec 2007
1