Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.14487
Cited By
Receptive Field Refinement for Convolutional Neural Networks Reliably Improves Predictive Performance
26 November 2022
Mats L. Richter
C. Pal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Receptive Field Refinement for Convolutional Neural Networks Reliably Improves Predictive Performance"
9 / 9 papers shown
Title
Self-supervised Video Object Segmentation with Distillation Learning of Deformable Attention
Quang-Trung Truong
Duc Thanh Nguyen
Binh-Son Hua
Sai-Kit Yeung
VOS
34
1
0
25 Jan 2024
Balanced Mixture of SuperNets for Learning the CNN Pooling Architecture
Mehraveh Javan
Matthew Toews
M. Pedersoli
31
1
0
21 Jun 2023
ResNet strikes back: An improved training procedure in timm
Ross Wightman
Hugo Touvron
Hervé Jégou
AI4TS
209
487
0
01 Oct 2021
ImageNet-21K Pretraining for the Masses
T. Ridnik
Emanuel Ben-Baruch
Asaf Noy
Lihi Zelnik-Manor
SSeg
VLM
CLIP
173
686
0
22 Apr 2021
High-Performance Large-Scale Image Recognition Without Normalization
Andrew Brock
Soham De
Samuel L. Smith
Karen Simonyan
VLM
223
512
0
11 Feb 2021
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
226
4,460
0
23 Jan 2020
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
950
20,561
0
17 Apr 2017
Xception: Deep Learning with Depthwise Separable Convolutions
François Chollet
MDE
BDL
PINN
203
14,357
0
07 Oct 2016
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
249
36,362
0
25 Aug 2016
1