Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.02011
Cited By
PointCaM: Cut-and-Mix for Open-Set Point Cloud Learning
5 December 2022
Jie Hong
Shi Qiu
Weihong Li
Saeed Anwar
Mehrtash Harandi
Nick Barnes
L. Petersson
3DPC
Re-assign community
ArXiv
PDF
HTML
Papers citing
"PointCaM: Cut-and-Mix for Open-Set Point Cloud Learning"
9 / 9 papers shown
Title
Open-world Semantic Segmentation for LIDAR Point Clouds
Jun Cen
Peng Yun
Shiwei Zhang
Junhao Cai
Di Luan
M. Y. Wang
Meilin Liu
Mingqian Tang
3DPC
39
28
0
04 Jul 2022
Region-Aware Metric Learning for Open World Semantic Segmentation via Meta-Channel Aggregation
Hexin Dong
Zi Chen
Mingze Yuan
Yutong Xie
Jie Zhao
Fei Yu
Bin Dong
Li Zhang
36
9
0
17 May 2022
Open-Set Recognition: a Good Closed-Set Classifier is All You Need?
S. Vaze
Kai Han
Andrea Vedaldi
Andrew Zisserman
BDL
167
404
0
12 Oct 2021
On the Importance of Gradients for Detecting Distributional Shifts in the Wild
Rui Huang
Andrew Geng
Yixuan Li
173
326
0
01 Oct 2021
Regularization Strategy for Point Cloud via Rigidly Mixed Sample
Dogyoon Lee
Jaeha Lee
Junhyeop Lee
Hyeongmin Lee
Minhyeok Lee
Sungmin Woo
Sangyoun Lee
3DPC
134
72
0
03 Feb 2021
Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation
Golnaz Ghiasi
Yin Cui
A. Srinivas
Rui Qian
Tsung-Yi Lin
E. D. Cubuk
Quoc V. Le
Barret Zoph
ISeg
223
962
0
13 Dec 2020
Joint 2D-3D-Semantic Data for Indoor Scene Understanding
Iro Armeni
S. Sax
Amir Zamir
Silvio Savarese
3DV
3DPC
113
873
0
03 Feb 2017
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
219
14,047
0
02 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
1