ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.10836
  4. Cited By
Towards Rapid Prototyping and Comparability in Active Learning for Deep
  Object Detection

Towards Rapid Prototyping and Comparability in Active Learning for Deep Object Detection

21 December 2022
Tobias Riedlinger
Marius Schubert
Karsten Kahl
Hanno Gottschalk
Matthias Rottmann
    VLM
    ObjD
ArXivPDFHTML

Papers citing "Towards Rapid Prototyping and Comparability in Active Learning for Deep Object Detection"

2 / 2 papers shown
Title
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,109
0
06 Jun 2015
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
282
39,170
0
01 Sep 2014
1