Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2301.07733
Cited By
v1
v2
v3
v4
v5 (latest)
Learning-Rate-Free Learning by D-Adaptation
International Conference on Machine Learning (ICML), 2023
18 January 2023
Aaron Defazio
Konstantin Mishchenko
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning-Rate-Free Learning by D-Adaptation"
50 / 78 papers shown
Title
Deep Progressive Training: scaling up depth capacity of zero/one-layer models
Zhiqi Bu
AI4CE
96
0
0
07 Nov 2025
ADP-VRSGP: Decentralized Learning with Adaptive Differential Privacy via Variance-Reduced Stochastic Gradient Push
Xiaoming Wu
Teng Liu
Xin Wang
Ming Yang
Jiguo Yu
72
0
0
23 Oct 2025
Convergence of Regret Matching in Potential Games and Constrained Optimization
Ioannis Anagnostides
Emanuel Tewolde
B. Zhang
Ioannis Panageas
Vincent Conitzer
Tuomas Sandholm
176
1
0
20 Oct 2025
AutoGD: Automatic Learning Rate Selection for Gradient Descent
Nikola Surjanovic
Alexandre Bouchard-Côté
Trevor Campbell
ODL
205
0
0
10 Oct 2025
Adaptive Memory Momentum via a Model-Based Framework for Deep Learning Optimization
Kristi Topollai
A. Choromańska
ODL
283
0
0
06 Oct 2025
Non-Euclidean Broximal Point Method: A Blueprint for Geometry-Aware Optimization
Kaja Gruntkowska
Peter Richtárik
152
2
0
01 Oct 2025
A regret minimization approach to fixed-point iterations
Joon Kwon
96
0
0
25 Sep 2025
Development of Deep Learning Optimizers: Approaches, Concepts, and Update Rules
Doğay Altınel
104
0
0
22 Sep 2025
Stochastic Adaptive Gradient Descent Without Descent
Jean-François Aujol
Jérémie Bigot
Camille Castera
ODL
216
1
0
18 Sep 2025
Cumulative Learning Rate Adaptation: Revisiting Path-Based Schedules for SGD and Adam
Asma Atamna
Tom Maus
Fabian Kievelitz
Tobias Glasmachers
48
0
0
07 Aug 2025
Nesterov Finds GRAAL: Optimal and Adaptive Gradient Method for Convex Optimization
Ekaterina Borodich
D. Kovalev
120
1
0
13 Jul 2025
Weakly Supervised Object Segmentation by Background Conditional Divergence
Hassan Baker
Matthew Emigh
Austin J. Brockmeier
79
0
0
25 Jun 2025
The Sample Complexity of Parameter-Free Stochastic Convex Optimization
Jared Lawrence
Ari Kalinsky
Hannah Bradfield
Y. Carmon
Oliver Hinder
169
0
0
12 Jun 2025
Why Gradients Rapidly Increase Near the End of Training
Aaron Defazio
124
6
0
02 Jun 2025
LightSAM: Parameter-Agnostic Sharpness-Aware Minimization
Yifei Cheng
Li Shen
Hao Sun
Nan Yin
Xiaochun Cao
Enhong Chen
AAML
198
0
0
30 May 2025
How far away are truly hyperparameter-free learning algorithms?
Priya Kasimbeg
Vincent Roulet
Naman Agarwal
Sourabh Medapati
Fabian Pedregosa
Atish Agarwala
George E. Dahl
139
0
0
29 May 2025
AutoSGD: Automatic Learning Rate Selection for Stochastic Gradient Descent
Nikola Surjanovic
Alexandre Bouchard-Côté
Trevor Campbell
130
1
0
27 May 2025
Analysis of an Idealized Stochastic Polyak Method and its Application to Black-Box Model Distillation
Robert M. Gower
Guillaume Garrigos
Nicolas Loizou
Dimitris Oikonomou
Konstantin Mishchenko
Fabian Schaipp
237
5
0
02 Apr 2025
Benefits of Learning Rate Annealing for Tuning-Robustness in Stochastic Optimization
Amit Attia
Tomer Koren
337
1
0
13 Mar 2025
Towards hyperparameter-free optimization with differential privacy
International Conference on Learning Representations (ICLR), 2025
Zhiqi Bu
Ruixuan Liu
212
7
0
02 Mar 2025
LOB-Bench: Benchmarking Generative AI for Finance -- an Application to Limit Order Book Data
Peer Nagy
Sascha Frey
Kang Li
Bidipta Sarkar
Svitlana Vyetrenko
Stefan Zohren
Ani Calinescu
Jakob Foerster
564
4
0
13 Feb 2025
A Hessian-informed hyperparameter optimization for differential learning rate
Shiyun Xu
Zhiqi Bu
Yiliang Zhang
Ian Barnett
322
1
0
12 Jan 2025
Temporal Context Consistency Above All: Enhancing Long-Term Anticipation by Learning and Enforcing Temporal Constraints
Alberto Maté
Mariella Dimiccoli
AI4TS
234
0
0
27 Dec 2024
MARINA-P: Superior Performance in Non-smooth Federated Optimization with Adaptive Stepsizes
Igor Sokolov
Peter Richtárik
283
1
0
22 Dec 2024
An Energy-Based Self-Adaptive Learning Rate for Stochastic Gradient Descent: Enhancing Unconstrained Optimization with VAV method
Jiahao Zhang
Christian Moya
Guang Lin
195
0
0
10 Nov 2024
CRONOS: Enhancing Deep Learning with Scalable GPU Accelerated Convex Neural Networks
Neural Information Processing Systems (NeurIPS), 2024
Miria Feng
Zachary Frangella
Mert Pilanci
BDL
368
2
0
02 Nov 2024
Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate
North American Chapter of the Association for Computational Linguistics (NAACL), 2024
Zhiqi Bu
Xiaomeng Jin
Bhanukiran Vinzamuri
Anil Ramakrishna
Kai-Wei Chang
Volkan Cevher
Mingyi Hong
MU
509
20
0
29 Oct 2024
Tuning-Free Coreset Markov Chain Monte Carlo via Hot DoG
Conference on Uncertainty in Artificial Intelligence (UAI), 2024
Naitong Chen
Jonathan H. Huggins
Trevor Campbell
253
0
0
24 Oct 2024
A second-order-like optimizer with adaptive gradient scaling for deep learning
Jérôme Bolte
Ryan Boustany
Edouard Pauwels
Andrei Purica
ODL
162
0
0
08 Oct 2024
Diffusing to the Top: Boost Graph Neural Networks with Minimal Hyperparameter Tuning
International Conference on Learning Representations (ICLR), 2024
Lequan Lin
Dai Shi
Andi Han
Zhiyong Wang
Junbin Gao
228
0
0
08 Oct 2024
Old Optimizer, New Norm: An Anthology
Jeremy Bernstein
Laker Newhouse
ODL
278
63
0
30 Sep 2024
State-free Reinforcement Learning
Neural Information Processing Systems (NeurIPS), 2024
Mingyu Chen
Aldo Pacchiano
Xuezhou Zhang
199
0
0
27 Sep 2024
VMAS: Video-to-Music Generation via Semantic Alignment in Web Music Videos
IEEE Workshop/Winter Conference on Applications of Computer Vision (WACV), 2024
Yan-Bo Lin
Yu Tian
L. Yang
Gedas Bertasius
Heng Wang
VGen
194
13
0
11 Sep 2024
Exploring Foundation Models for Synthetic Medical Imaging: A Study on Chest X-Rays and Fine-Tuning Techniques
Davide Clode da Silva
Marina Musse Bernardes
Nathalia Giacomini Ceretta
Gabriel Vaz de Souza
Gabriel Fonseca Silva
Rafael Heitor Bordini
S. Musse
MedIm
LM&MA
125
0
0
06 Sep 2024
Stepping on the Edge: Curvature Aware Learning Rate Tuners
Vincent Roulet
Atish Agarwala
Jean-Bastien Grill
Grzegorz Swirszcz
Mathieu Blondel
Fabian Pedregosa
294
4
0
08 Jul 2024
An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes
Antonio Orvieto
Lin Xiao
250
6
0
05 Jul 2024
Dreamguider: Improved Training free Diffusion-based Conditional Generation
Nithin Gopalakrishnan Nair
Vishal M. Patel
241
3
0
04 Jun 2024
Learning-Rate-Free Stochastic Optimization over Riemannian Manifolds
Daniel Dodd
Louis Sharrock
Christopher Nemeth
216
1
0
04 Jun 2024
Fully Unconstrained Online Learning
Ashok Cutkosky
Zakaria Mhammedi
CLL
151
5
0
30 May 2024
The High Line: Exact Risk and Learning Rate Curves of Stochastic Adaptive Learning Rate Algorithms
Elizabeth Collins-Woodfin
Inbar Seroussi
Begona García Malaxechebarría
Andrew W. Mackenzie
Elliot Paquette
Courtney Paquette
135
2
0
30 May 2024
The Road Less Scheduled
Aaron Defazio
Xingyu Yang
Yang
Harsh Mehta
Konstantin Mishchenko
Ahmed Khaled
Ashok Cutkosky
344
114
0
24 May 2024
Scalable Optimization in the Modular Norm
Neural Information Processing Systems (NeurIPS), 2024
Tim Large
Yang Liu
Minyoung Huh
Hyojin Bahng
Phillip Isola
Jeremy Bernstein
217
30
0
23 May 2024
Unleash Graph Neural Networks from Heavy Tuning
Lequan Lin
Dai Shi
Andi Han
Zhiyong Wang
Junbin Gao
AI4CE
190
3
0
21 May 2024
Towards Stability of Parameter-free Optimization
Yijiang Pang
Shuyang Yu
Hoang Bao
Jiayu Zhou
320
1
0
07 May 2024
Remove that Square Root: A New Efficient Scale-Invariant Version of AdaGrad
Sayantan Choudhury
N. Tupitsa
Nicolas Loizou
Samuel Horváth
Martin Takáč
Eduard A. Gorbunov
321
5
0
05 Mar 2024
Data-Efficient Operator Learning via Unsupervised Pretraining and In-Context Learning
Wuyang Chen
Jialin Song
Pu Ren
Shashank Subramanian
Dmitriy Morozov
Michael W. Mahoney
AI4CE
384
20
0
24 Feb 2024
Tuning-Free Stochastic Optimization
Ahmed Khaled
Chi Jin
206
13
0
12 Feb 2024
AdaBatchGrad: Combining Adaptive Batch Size and Adaptive Step Size
P. Ostroukhov
Aigerim Zhumabayeva
Chulu Xiang
Alexander Gasnikov
Martin Takáč
Dmitry Kamzolov
ODL
182
2
0
07 Feb 2024
How Free is Parameter-Free Stochastic Optimization?
International Conference on Machine Learning (ICML), 2024
Amit Attia
Tomer Koren
ODL
296
10
0
05 Feb 2024
MetaOptimize: A Framework for Optimizing Step Sizes and Other Meta-parameters
Arsalan Sharifnassab
Saber Salehkaleybar
Richard Sutton
321
3
0
04 Feb 2024
1
2
Next