ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.12832
  4. Cited By
Deep networks for system identification: a Survey

Deep networks for system identification: a Survey

30 January 2023
G. Pillonetto
Aleksandr Aravkin
Daniel Gedon
L. Ljung
Antônio H. Ribeiro
Thomas B. Schon
    OOD
ArXivPDFHTML

Papers citing "Deep networks for system identification: a Survey"

16 / 16 papers shown
Title
Introducing Interval Neural Networks for Uncertainty-Aware System Identification
Introducing Interval Neural Networks for Uncertainty-Aware System Identification
Mehmet Ali Ferah
Tufan Kumbasar
19
0
0
26 Apr 2025
Nonconvex Linear System Identification with Minimal State Representation
Nonconvex Linear System Identification with Minimal State Representation
Uday Kiran Reddy Tadipatri
B. Haeffele
Joshua Agterberg
Ingvar Ziemann
René Vidal
26
0
0
26 Apr 2025
Online Control-Informed Learning
Online Control-Informed Learning
Zihao Liang
Tianyu Zhou
Zehui Lu
Shaoshuai Mou
33
1
0
04 Oct 2024
Exploiting the capacity of deep networks only at training stage for
  nonlinear black-box system identification
Exploiting the capacity of deep networks only at training stage for nonlinear black-box system identification
V. M. Eivaghi
M. A. Shoorehdeli
23
0
0
26 Dec 2023
Dealing with Collinearity in Large-Scale Linear System Identification
  Using Gaussian Regression
Dealing with Collinearity in Large-Scale Linear System Identification Using Gaussian Regression
Wenqi Cao
G. Pillonetto
19
0
0
21 Feb 2023
Neural Ordinary Differential Equations for Nonlinear System
  Identification
Neural Ordinary Differential Equations for Nonlinear System Identification
Aowabin Rahman
Ján Drgoňa
Aaron Tuor
J. Strube
25
22
0
28 Feb 2022
Effective dimension of machine learning models
Effective dimension of machine learning models
Amira Abbas
David Sutter
Alessio Figalli
Stefan Woerner
77
17
0
09 Dec 2021
Near-Minimax Optimal Estimation With Shallow ReLU Neural Networks
Near-Minimax Optimal Estimation With Shallow ReLU Neural Networks
Rahul Parhi
Robert D. Nowak
48
38
0
18 Sep 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
174
1,103
0
27 Apr 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
273
2,886
0
15 Sep 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
247
36,356
0
25 Aug 2016
Effective Approaches to Attention-based Neural Machine Translation
Effective Approaches to Attention-based Neural Machine Translation
Thang Luong
Hieu H. Pham
Christopher D. Manning
214
7,923
0
17 Aug 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
261
9,134
0
06 Jun 2015
Manifold Gaussian Processes for Regression
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
84
271
0
24 Feb 2014
Nonparametric sparsity and regularization
Nonparametric sparsity and regularization
Lorenzo Rosasco
S. Villa
S. Mosci
M. Santoro
A. Verri
85
102
0
13 Aug 2012
1