ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.02228
  4. Cited By
Counterfactual Identifiability of Bijective Causal Models
v1v2 (latest)

Counterfactual Identifiability of Bijective Causal Models

International Conference on Machine Learning (ICML), 2023
4 February 2023
Arash Nasr-Esfahany
MohammadIman Alizadeh
Devavrat Shah
    CMLBDL
ArXiv (abs)PDFHTML

Papers citing "Counterfactual Identifiability of Bijective Causal Models"

30 / 30 papers shown
DoFlow: Causal Generative Flows for Interventional and Counterfactual Time-Series Prediction
DoFlow: Causal Generative Flows for Interventional and Counterfactual Time-Series Prediction
Dongze Wu
Feng Qiu
Yao Xie
AI4TSOODBDLAI4CE
385
0
0
04 Nov 2025
Counterfactually Fair Conformal Prediction
Counterfactually Fair Conformal Prediction
Ozgur Guldogan
Neeraj Sarna
Yuanyuan Li
Michael Berger
146
0
0
09 Oct 2025
Beyond Pass@k: Breadth-Depth Metrics for Reasoning Boundaries
Beyond Pass@k: Breadth-Depth Metrics for Reasoning Boundaries
Marius Dragoi
Ioana Pintilie
Florin Gogianu
Florin Brad
OffRLLRM
308
0
0
09 Oct 2025
Wasserstein Distributionally Robust Optimization Through the Lens of Structural Causal Models and Individual Fairness
Wasserstein Distributionally Robust Optimization Through the Lens of Structural Causal Models and Individual FairnessNeural Information Processing Systems (NeurIPS), 2025
A. Ehyaei
G. Farnadi
Samira Samadi
153
3
0
30 Sep 2025
What is a good matching of probability measures? A counterfactual lens on transport maps
What is a good matching of probability measures? A counterfactual lens on transport maps
Lucas De Lara
Luca Ganassali
166
0
0
19 Sep 2025
Partially Functional Dynamic Backdoor Diffusion-based Causal Model
Partially Functional Dynamic Backdoor Diffusion-based Causal Model
Xinwen Liu
Lei Qian
Song Xi Chen
Niansheng Tang
183
0
0
30 Aug 2025
Counterfactual reasoning: an analysis of in-context emergence
Counterfactual reasoning: an analysis of in-context emergence
Moritz Miller
Bernhard Schölkopf
Siyuan Guo
ReLMLRM
377
0
0
05 Jun 2025
Flow-based Generative Modeling of Potential Outcomes and Counterfactuals
Flow-based Generative Modeling of Potential Outcomes and Counterfactuals
Dongze Wu
David I. Inouye
Yao Xie
244
1
0
21 May 2025
A New Approach to Backtracking Counterfactual Explanations: A Unified Causal Framework for Efficient Model Interpretability
A New Approach to Backtracking Counterfactual Explanations: A Unified Causal Framework for Efficient Model Interpretability
Pouria Fatemi
Ehsan Sharifian
Mohammad Hossein Yassaee
388
0
0
05 May 2025
Multi-Domain Causal Discovery in Bijective Causal Models
Multi-Domain Causal Discovery in Bijective Causal ModelsCLEaR (CLEaR), 2025
Kasra Jalaldoust
Saber Salehkaleybar
Negar Kiyavash
CML
280
2
0
30 Apr 2025
Interpretable Neural Causal Models with TRAM-DAGs
Interpretable Neural Causal Models with TRAM-DAGsCLEaR (CLEaR), 2025
Beate Sick
Oliver Durr
CML
253
2
0
20 Mar 2025
DeCaFlow: A deconfounding causal generative model
DeCaFlow: A deconfounding causal generative model
Alejandro Almodóvar
Adrián Javaloy
J. Parras
Santiago Zazo
Isabel Valera
CML
389
0
0
19 Mar 2025
Unsupervised Structural-Counterfactual Generation under Domain Shift
Unsupervised Structural-Counterfactual Generation under Domain Shift
Krishn Vishwas Kher
Lokesh Venkata Siva Maruthi Badisa
Saksham Mittal
Kusampudi Venkata Datta Sri Harsha
Chitneedi Geetha Sowmya
SakethaNath Jagarlapudi
OODCML
248
0
0
17 Feb 2025
Learning Counterfactual Outcomes Under Rank Preservation
Learning Counterfactual Outcomes Under Rank Preservation
Peng Wu
Haoxuan Li
Chunyuan Zheng
Yan Zeng
Jiawei Chen
Yang Liu
Ruocheng Guo
Jianchao Tan
326
1
0
10 Feb 2025
Lookahead Counterfactual Fairness
Lookahead Counterfactual Fairness
Zhiqun Zuo
Tian Xie
Xuwei Tan
Xueru Zhang
Mohammad Mahdi Khalili
FaML
442
0
0
02 Dec 2024
Counterfactual Fairness by Combining Factual and Counterfactual Predictions
Counterfactual Fairness by Combining Factual and Counterfactual PredictionsNeural Information Processing Systems (NeurIPS), 2024
Zeyu Zhou
Tianci Liu
Ruqi Bai
Jing Gao
Murat Kocaoglu
David I. Inouye
363
9
0
03 Sep 2024
Learning Structural Causal Models through Deep Generative Models:
  Methods, Guarantees, and Challenges
Learning Structural Causal Models through Deep Generative Models: Methods, Guarantees, and ChallengesInternational Joint Conference on Artificial Intelligence (IJCAI), 2024
Audrey Poinsot
Alessandro Leite
Nicolas Chesneau
Michèle Sébag
Marc Schoenauer
290
9
0
08 May 2024
Counterfactual Image Editing
Counterfactual Image Editing
Yushu Pan
Elias Bareinboim
BDLCML
276
17
0
07 Feb 2024
Causal Bayesian Optimization via Exogenous Distribution Learning
Causal Bayesian Optimization via Exogenous Distribution Learning
Shaogang Ren
Xiaoning Qian
491
2
0
03 Feb 2024
Deep Learning With DAGs
Deep Learning With DAGsSocial Science Research Network (SSRN), 2024
Sourabh Vivek Balgi
Adel Daoud
Jose M. Pena
G. Wodtke
Jesse Zhou
AI4CECML
257
5
0
12 Jan 2024
Consistent End-to-End Estimation for Counterfactual Fairness
Consistent End-to-End Estimation for Counterfactual Fairness
Yuchen Ma
Dennis Frauen
Valentyn Melnychuk
Stefan Feuerriegel
257
3
0
26 Oct 2023
Agent-Specific Effects: A Causal Effect Propagation Analysis in
  Multi-Agent MDPs
Agent-Specific Effects: A Causal Effect Propagation Analysis in Multi-Agent MDPsInternational Conference on Machine Learning (ICML), 2023
Stelios Triantafyllou
A. Sukovic
Debmalya Mandal
Goran Radanović
389
0
0
17 Oct 2023
From Identifiable Causal Representations to Controllable Counterfactual
  Generation: A Survey on Causal Generative Modeling
From Identifiable Causal Representations to Controllable Counterfactual Generation: A Survey on Causal Generative Modeling
Aneesh Komanduri
Xintao Wu
Yongkai Wu
Feng Chen
CMLOOD
464
23
0
17 Oct 2023
Deep Backtracking Counterfactuals for Causally Compliant Explanations
Deep Backtracking Counterfactuals for Causally Compliant Explanations
Klaus-Rudolf Kladny
Julius von Kügelgen
Bernhard Schölkopf
Michael Muehlebach
BDL
479
9
0
11 Oct 2023
Towards Characterizing Domain Counterfactuals For Invertible Latent
  Causal Models
Towards Characterizing Domain Counterfactuals For Invertible Latent Causal ModelsInternational Conference on Learning Representations (ICLR), 2023
Zeyu Zhou
Ruqi Bai
Sean Kulinski
Murat Kocaoglu
David I. Inouye
CML
285
3
0
20 Jun 2023
Advancing Counterfactual Inference through Nonlinear Quantile Regression
Advancing Counterfactual Inference through Nonlinear Quantile Regression
Shaoan Xie
Erdun Gao
Bin Gu
Tongliang Liu
Kun Zhang
284
1
0
09 Jun 2023
Causal normalizing flows: from theory to practice
Causal normalizing flows: from theory to practiceNeural Information Processing Systems (NeurIPS), 2023
Adrián Javaloy
Pablo Sánchez-Martín
Isabel Valera
TPMCMLAI4CE
398
38
0
08 Jun 2023
Finding Counterfactually Optimal Action Sequences in Continuous State
  Spaces
Finding Counterfactually Optimal Action Sequences in Continuous State SpacesNeural Information Processing Systems (NeurIPS), 2023
Stratis Tsirtsis
Manuel Gomez Rodriguez
CMLOffRL
339
13
0
06 Jun 2023
Partial Counterfactual Identification of Continuous Outcomes with a
  Curvature Sensitivity Model
Partial Counterfactual Identification of Continuous Outcomes with a Curvature Sensitivity ModelNeural Information Processing Systems (NeurIPS), 2023
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
525
13
0
02 Jun 2023
Learning Causally Disentangled Representations via the Principle of
  Independent Causal Mechanisms
Learning Causally Disentangled Representations via the Principle of Independent Causal MechanismsInternational Joint Conference on Artificial Intelligence (IJCAI), 2023
Aneesh Komanduri
Yongkai Wu
Feng Chen
Xintao Wu
CMLOOD
465
17
0
02 Jun 2023
1
Page 1 of 1