Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.03679
Cited By
How Reliable is Your Regression Model's Uncertainty Under Real-World Distribution Shifts?
7 February 2023
Fredrik K. Gustafsson
Martin Danelljan
Thomas B. Schon
OOD
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How Reliable is Your Regression Model's Uncertainty Under Real-World Distribution Shifts?"
7 / 7 papers shown
Title
Cooperative Bayesian and variance networks disentangle aleatoric and epistemic uncertainties
Jiaxiang Yi
Miguel A. Bessa
UD
PER
UQCV
37
0
0
05 May 2025
Lightning UQ Box: A Comprehensive Framework for Uncertainty Quantification in Deep Learning
Nils Lehmann
Jakob Gawlikowski
Adam J. Stewart
Vytautas Jancauskas
Stefan Depeweg
Eric T. Nalisnick
N. Gottschling
35
0
0
04 Oct 2024
Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift
Benjamin Eyre
Elliot Creager
David Madras
Antonio Torralba
Katherine Heller
OOD
OODD
23
1
0
29 Dec 2023
Improving Robustness against Real-World and Worst-Case Distribution Shifts through Decision Region Quantification
Leo Schwinn
Leon Bungert
A. Nguyen
René Raab
Falk Pulsmeyer
Doina Precup
Björn Eskofier
Dario Zanca
OOD
42
12
0
19 May 2022
A Fine-Grained Analysis on Distribution Shift
Olivia Wiles
Sven Gowal
Florian Stimberg
Sylvestre-Alvise Rebuffi
Ira Ktena
Krishnamurthy Dvijotham
A. Cemgil
OOD
215
196
0
21 Oct 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
1