ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.06975
  4. Cited By
A Review of the Role of Causality in Developing Trustworthy AI Systems

A Review of the Role of Causality in Developing Trustworthy AI Systems

14 February 2023
Niloy Ganguly
Dren Fazlija
Maryam Badar
M. Fisichella
Sandipan Sikdar
Johanna Schrader
Jonas Wallat
Koustav Rudra
Manolis Koubarakis
Gourab K. Patro
W. Z. E. Amri
Wolfgang Nejdl
    CML
ArXivPDFHTML

Papers citing "A Review of the Role of Causality in Developing Trustworthy AI Systems"

12 / 12 papers shown
Title
Causality Is Key to Understand and Balance Multiple Goals in Trustworthy ML and Foundation Models
Causality Is Key to Understand and Balance Multiple Goals in Trustworthy ML and Foundation Models
Ruta Binkyte
Ivaxi Sheth
Zhijing Jin
Mohammad Havaei
Bernhard Schölkopf
Mario Fritz
53
0
0
28 Feb 2025
A Survey on Causal Discovery Methods for I.I.D. and Time Series Data
A Survey on Causal Discovery Methods for I.I.D. and Time Series Data
Uzma Hasan
Emam Hossain
Md. Osman Gani
CML
AI4TS
13
24
0
27 Mar 2023
Provable Domain Generalization via Invariant-Feature Subspace Recovery
Provable Domain Generalization via Invariant-Feature Subspace Recovery
Haoxiang Wang
Haozhe Si
Bo-wen Li
Han Zhao
OOD
44
32
0
30 Jan 2022
Linear Adversarial Concept Erasure
Linear Adversarial Concept Erasure
Shauli Ravfogel
Michael Twiton
Yoav Goldberg
Ryan Cotterell
KELM
71
56
0
28 Jan 2022
Algorithm Fairness in AI for Medicine and Healthcare
Algorithm Fairness in AI for Medicine and Healthcare
Richard J. Chen
Tiffany Y. Chen
Jana Lipkova
Judy J. Wang
Drew F. K. Williamson
Ming Y. Lu
S. Sahai
Faisal Mahmood
FaML
66
44
0
01 Oct 2021
RobustBench: a standardized adversarial robustness benchmark
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
207
668
0
19 Oct 2020
Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and
  Goals of Human Trust in AI
Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and Goals of Human Trust in AI
Alon Jacovi
Ana Marasović
Tim Miller
Yoav Goldberg
241
417
0
15 Oct 2020
Language Models as Knowledge Bases?
Language Models as Knowledge Bases?
Fabio Petroni
Tim Rocktaschel
Patrick Lewis
A. Bakhtin
Yuxiang Wu
Alexander H. Miller
Sebastian Riedel
KELM
AI4MH
396
2,576
0
03 Sep 2019
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
286
4,143
0
23 Aug 2019
How Algorithmic Confounding in Recommendation Systems Increases
  Homogeneity and Decreases Utility
How Algorithmic Confounding in Recommendation Systems Increases Homogeneity and Decreases Utility
A. Chaney
Brandon M Stewart
Barbara E. Engelhardt
CML
161
312
0
30 Oct 2017
A causal framework for explaining the predictions of black-box
  sequence-to-sequence models
A causal framework for explaining the predictions of black-box sequence-to-sequence models
David Alvarez-Melis
Tommi Jaakkola
CML
210
201
0
06 Jul 2017
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
279
39,083
0
01 Sep 2014
1