ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.11188
  4. Cited By
What Are Effective Labels for Augmented Data? Improving Calibration and
  Robustness with AutoLabel

What Are Effective Labels for Augmented Data? Improving Calibration and Robustness with AutoLabel

22 February 2023
Yao Qin
Xuezhi Wang
Balaji Lakshminarayanan
Ed H. Chi
Alex Beutel
    UQCV
ArXivPDFHTML

Papers citing "What Are Effective Labels for Augmented Data? Improving Calibration and Robustness with AutoLabel"

5 / 5 papers shown
Title
Robust Classification by Coupling Data Mollification with Label Smoothing
Robust Classification by Coupling Data Mollification with Label Smoothing
Markus Heinonen
Ba-Hien Tran
Michael Kampffmeyer
Maurizio Filippone
70
0
0
03 Jun 2024
Improving Robustness via Tilted Exponential Layer: A
  Communication-Theoretic Perspective
Improving Robustness via Tilted Exponential Layer: A Communication-Theoretic Perspective
Bhagyashree Puranik
Ahmad Beirami
Yao Qin
Upamanyu Madhow
AAML
17
0
0
02 Nov 2023
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
282
9,136
0
06 Jun 2015
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
296
39,194
0
01 Sep 2014
1